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A Theory

A.1 Homogeneous Demand

Suppose that schools choose x1, x2 ≥ 0 and q1, q2 ∈ {qH , qL} in the first stage and p1, p2 in
the second stage. Let si be school i’s surplus, that is si = qi − pi. Therefore, school i’s profit
function is:

Πi =


(pi − c)(xi + M

2 )− rxi − wt +K, if [si > sj ] or [si = sj and qi > qj ]

(pi − c)(N − xj + M
2 )− rxi − wt +K, if [si < sj ] or [si = sj and qi < qj ]

(pi − c) (M/2+xi)T
M+xi+xj

− rxi − wt +K, if si = sj and qi = qj

Define nH = K−w
r and nL = K

r to be the additional capacity increase that schools can
afford under high and low technologies, respectively. Note that feasibility requires that xi ≤ nL
and xi ≤ nH whenever qi = qH . One can easily verify that if the schools’ capacity choices x1
and x2 are such that x1 + x2 ≤ N , then in the pricing stage, school i picks pi = qi. Let µ be a
probability density function with support [p, p̄]. Then for notational simplicity, we use µ̂(p) for
any p ∈ [p, p̄] to denote µ({p}). Before proving the main results, we prove the following result,
which applies to both low (L) and high-saturation (H) treatments.

Proposition A. Suppose that the schools’ quality choices are q1, q2 ∈ {qH , qL} and capacity
choices are x1, x2 ≥ 0 with x1, x2 ≤ N + M

2 and x1 + x2 > N . Then in the (second) pricing
stage, there exists no pure strategy equilibrium. However, there exists a mixed strategy equilibrium
(µ∗1, µ

∗
2), where for i = 1, 2, µ∗i is

(i) a probability density function with support [p∗i , qi], satisfying c < p∗i < qi, and

(ii) atomless except possibly at qi, that is µ̂∗i (p) = 0 for all p ∈ [p∗i , qi).

(iii) Furthermore, µ̂∗1(p1)µ̂
∗
2(p2) = 0 for all p1 ∈ [p∗1, q1] and p2 ∈ [p∗2, q2] satisfying q1 − p1 =

q2 − p2.

Proof of Proposition A. Because no school alone can cover the entire market, i.e., xi < N+M
2 ,

p1 = p2 = c cannot be an equilibrium outcome. Likewise, given that the schools compete in a
Bertrand fashion and total capacity, M+x1 +x2, is greater than total demand, M+N , showing
that there is no pure strategy equilibrium is straightforward, and left to the readers.

However, by Theorem 5 of Dasgupta and Maskin (1986), the game has a mixed-strategy
equilibrium: The discontinuities in the profit functions Πi(p1, p2) are restricted to the price
couples where both schools offer the same surplus, that is {(p1, p2) ∈ [c, qH ]2|q1− p1 = q2− p2}.
Lowering its price from a position c < q1− p1 = q2− p2 ≤ qH , a school discontinuously increases
its profit. Hence, Πi(p1, p2) is weakly lower semi-continuous. Πi(p1, p2) is also clearly bounded.
Finally, Π1 + Π2 is upper semi-continuous because discontinuous shifts in students from one
school to another occur where either both schools derive the same profit per student (when
q1 = q2) or the total profit stays the same or jumps per student because the higher quality
school steals the student from the low quality school and charges higher price (when q1 6= q2).
Thus, by Theorem 5 of Dasgupta and Maskin (1986), the game has a mixed-strategy equilibrium.

Suppose that (µ∗1, µ
∗
2) is a mixed-strategy equilibrium of the pricing stage. Let p̄i be the

supremum of the support of µ∗i , so p̄i = inf{p ∈ [c, qi]|p ∈ supp(µ∗i )}. Likewise, let p∗i be
the infimum of the support of µ∗i . Define s(pi, qi) to be the surplus that school i offers, so
s(pi, qi) = qi − pi. We will prove the remaining claims of the proposition through a series of
Lemmata.

Lemma A1. s(p∗1, q1) = s(p∗2, q2) and p∗i > c for i = 1, 2.
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Proof. Note that the claim turns into the condition p∗1 = p∗2 > c when q1 = q2. To show
s(p∗1, q1) = s(p∗2, q2), suppose for a contradiction that s(p∗1, q1) 6= s(p∗2, q2). Assume, without
loss of generality, that s(p∗1, q1) > s(p∗2, q2). For any p1 ≥ p∗1 in the support of µ∗1 satisfying
s(p∗1, q1) ≥ s(p1, q1) > s(p∗2, q2), player 1 can increase its expected profit by deviating to a price
p′1 = p1 + ε satisfying s(p′1, q1) > s(p∗2, q2). This is true because by slightly increasing its price
from p1 to p′1 school 1 keeps its expected enrollment the same. This opportunity of a profitable
deviation contradicts with the optimality of equilibrium. The case for s(p∗1, q1) < s(p∗2, q2) is
symmetric. Thus, we must have s(p∗1, q1) = s(p∗2, q2).

Showing that p∗i > c for i = 1, 2 is straightforward: Suppose for a contradiction that pi = c
for some i, so school i is making zero profit per student it enrolls. However, because no school
can cover the entire market, i.e., xj < M

2 + N , school i can get positive residual demand and
positive profit by picking a price strictly above c, contradicting the optimality of equilibrium.

Definition 1. Let [ai, bi) be a non-empty subset of [c, qi] for i = 1, 2. Then [a1, b1) and [a2, b2)
are called surplus-equivalent if s(a1, q1) = s(a2, q2) and s(b1, q1) = s(b2, q2).

Lemma A2. Let [ai, bi) be a non-empty subset of [c, qi] for i = 1, 2. If [a1, b1) and [a2, b2) are
surplus equivalent, then µ∗1([a1, b1)) = 0 if and only if µ∗2([a2, b2)) = 0.

Proof. Take any two such intervals and suppose, without loss of generality, µ∗1([a1, b1)) = 0.
That is, [a1, b1) is not in the support of µ∗1. Therefore, for any p ∈ [a2, b2), player 2’s expected
enrollment does not change by moving to a higher price within this set [a2, b2). However, player
2 receives a higher profit simply because it is charging a higher price per student. Hence,
optimality of equilibrium implies that player 2 should never name a price in the interval [a2, b2),
implying that µ∗2([a2, b2)) = 0.

Lemma A3. If pi ∈ (c, qi] for i = 1, 2 with s(p1, q1) = s(p2, q2), then µ̂∗1(p1)µ̂
∗
1(p2) = 0.

Proof. Suppose for a contradiction that there exists some p1 and p2 as in the premises of this
claim such that µ̂∗1(p1)µ̂∗1(p2) > 0. Because µ̂∗1(p1) > 0, player 2 can enjoy the discrete chance of
price-undercutting his opponent. That is, there exists sufficiently small ε > 0 such that player
2 gets strictly higher profit by naming price p2 − ε rather than price p2. This contradicts the
optimality of the equilibrium.

Lemma A4. Equilibrium strategies must be atomless except possibly at p̄i. More formally,
suppose that s(p̄i, qi) ≥ s(p̄j , qj) where i, j ∈ {1, 2} and j 6= i, then for any k ∈ {1, 2} and
p ∈ [c, qH ], satisfying p 6= p̄j, it must be the case that µ̂∗k(p) = 0.

Proof. Suppose without loss of generality that k = 1 and suppose for a contradiction that
µ̂∗1(p) > 0 for some p ∈ [c, qH ] \ {p̄j}. Therefore, there must exist sufficiently small ε > 0 and
δ > 0 such that for all p2 ∈ I ≡ [q2 − s(p, q1), q2 − s(p, q1) + ε) player 2 prefers to name a price
p2−δ instead of p2 and enjoy the discrete chance of price-undercutting his opponent. Therefore,
the optimality of the equilibrium strategies suggests that µ∗2(I) = 0. Because the intervals
[p, p+ ε) and I are surplus-equivalent, Lemma A2 implies that we must have µ∗1([p, p+ ε)) = 0,
contradicting µ̂∗1(p) > 0.

Lemma A5. s(p̄1, q1) = s(p̄2, q2) = 0, and thus p̄i = qi for i = 1, 2.

Proof. To show s(p̄1, q1) = s(p̄2, q2) suppose for a contradiction that s(p̄1, q1) 6= s(p̄2, q2).
Suppose, without loss of generality, that s(p̄2, q2) > s(p̄1, q1). Therefore, by Lemma A4 we
have µ∗2([p̄2, p̃2)) = 0 where p̃2 ≡ q2 − s(p̄1, q1), and by Lemma A2 µ∗1([p̃1, p̄1)) = 0 where
p̃1 ≡ q1 − s(p̄2, q2)). In fact, there must exist some small ε > 0 such that µ∗1([p̃1 − ε, p̄1)) = 0.
The last claim is true because player 1 prefers to deviate from any p ∈ [p̃1−ε, p̃1] to price p̄1 since
the change in profit, Π1(p, p2)−Π1(p̄1, p2) is equal to (p− c)µ∗([p, p̃1])x1− (p̄1− c)(T − x2) < 0
as ε converges zero. Because the sets [p̄2 − ε, p̃2) and [p̃1 − ε, p̄1) are surplus-equivalent and
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µ∗1([p̃1 − ε, p̄1)) = 0, Lemma A2 implies that µ∗2([p̄2 − ε, p̃2)) = 0, contradicting that p̄2 is the
supremum of the support of µ∗2. Thus, s(p̄1, q1) = s(p̄2, q2) must hold.

To show that s(p̄i, qi) = 0 for i = 1, 2, assume for a contradiction that s(p̄1, q1) = s(p̄2, q2) >
0. By Lemma A3 we know that µ̂∗1(p̄1)µ̂∗1(p̄2) = 0. Suppose, without loss of generality, that
µ̂∗1(p̄1) = 0. Therefore, player 2 can profitable deviate from price p̄2 to price q2: the deviation
does not change player 2’s expected enrollment, but it increases expected profit simply because
player 2 is charging a higher price per student it enrolls. This contradicts with the optimality
of the equilibrium, and so we must have s(p̄i, qi) = 0 for i = 1, 2.

Lemma A6. For each i ∈ {1, 2}, p̄i > p∗i , and there exists no p, p′ with p∗i < p < p′ < qi such
that µ∗i ([p, p

′]) = 0.

Proof. If p̄i = p∗i for some i, that is player i is playing a pure strategy, then player j can profitably
deviate from qj by price undercutting its opponent, contradicting the optimality of equilibrium.

Next, suppose for a contradiction that there exists p, p′ with p∗i < p < p′ < qi such that
µ∗i ([p, p

′]) = 0. By Lemma A2, there exists pj , p′j that are surplus equivalent to p, p
′, respectively,

and µ∗j ([pj , p
′
j ]) = 0. Then the optimality of equilibrium and Lemma A4 implies that there

exists some ε > 0 such that µ∗i ([p− ε, p′]) = 0. This is true because instead of picking a price in
[p− ε, p], school i would keep expected enrollment the same and increase its profit by picking a
higher price p′. Repeating the same arguments will eventually yield the conclusion that we have
µ∗i ([p

∗
i , p
′]) = 0, contradicting the assumption that p∗i is the infimum of the support of µ∗i .

For the rest of the proofs, we use Πt to denote the profit of a school that picks quality
t ∈ {H,L}. Let ΠDev

H denote the deviation profit of a school that deviates from high to low
quality (once the other school’s actions are fixed). Similarly, ΠDev

L denotes the deviation profit
of a school that deviates from low to high quality.

Proof of Theorem 1 (Low-Saturation Treatment). Suppose that (only) school 1 receives
the grant. Because the schools are symmetric, this does not affect our analysis. There are
four exhaustive cases we must consider for the low-saturation treatment and all these cases are
summarized in the following figure:

Case 1

2K
r

K
r

Kw∗

N
r +

w
=
K

Case 2
L

k/r

Case 3

w
=

(q
H
−
q L

)(
M
/2

+
N

)

Case 4

as K ↗ k̄

Case 3 & 4

N

w

Case 1: K ≤ Nr (or equivalently nL ≤ N): There would be no price competition among the
schools whether school 1 invests in capacity or quality. Therefore, ΠH = (qH − c)

(
M
2 + K−w

r

)
and ΠL = (qL − c)

(
M
2 + K

r

)
. Thus, there is an equilibrium where school 1 invests in quality if

and only if ΠH ≥ ΠL, implying w ≤ w∗.
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Case 2: K − w ≤ Nr < K (or equivalently nH ≤ N < nL): If school 1 invests in quality,
then ΠH = (qH − c)

(
M
2 + K−w

r

)
. But if it invests in capacity, then its optimal choice would be

x1 = N (as we formally prove below) and profit would be ΠL = (qL − c)
(
M
2 +N

)
+K −Nr.

Claim: If school 1 invests in capacity, then its optimal capacity choice x1 is such that x1 = N .

Proof. Suppose for a contradiction that x1 = N + e where e > 0. In the mixed strategy
equilibrium of the pricing stage, each school i randomly picks a price over the range [p∗i , qL]
with a probability measure µi. School 1’s profit functions are given by Π1(qL, µ2) = (qL −
c)
[
µ̂2(M/2+x1)(M+N)

M+x1
+ (1− µ̂2)

(
M
2 +N

)]
+ K − rx1, where µ̂2 = µ̂2(qL), and Π1(p

∗
1, µ2) =

(p∗1 − c)(x1 + M/2) + K − rx1. However, school 2’s profit functions are Π2(qL, µ1) = (qL −
c)
[
µ̂1(M/2)(M+N)

M+x1
+ (1− µ̂1)

(
M
2 +N − x1

)]
, where µ̂1 = µ̂1(qL) and Π2(p

∗
2, µ1) = (p∗2 − c)(M2 ).

In equilibrium both schools offer the same surplus, and so p∗1 = p∗2 holds. Moreover, be-
cause each school i is indifferent between qL and p∗i we must have Π1(qL, µ2) = Π1(p

∗
1, µ2) and

Π2(qL, µ1) = Π2(p
∗
2, µ1). We can solve these equalities for µ̂1 and µ̂2. However, we know that

in equilibrium we must have µ̂1µ̂2 = 0. If µ̂2 = 0, then it is easy to see that Π1(qL, µ2) de-
creases with x1 (or e), and thus optimal capacity should be x1 = N . However, µ̂1 = 0 yields
µ̂2 = −4(e+N)(e+M+N)

M2 < 0, contradicting with the optimality of equilibrium because we should
have µ̂2 ≥ 0. Thus, school 1’s optimal capacity is x1 = N .

Therefore, school 1 selects high quality if and only if ΠH ≥ ΠL, which implies

(qL − c− r)N + (qH − c)
w

r
≤ M

2
(qH − qL) + (qh − c− r)

K

r
.

The last condition gives us the line L. Drawing the line L on wN−space implies that the
N−intercept is greater than K/r and the w−intercept is greater than K whenever K < k̄.
Moreover, when w = w∗, N takes the value K/r and when w = K, N takes a value which is
less than K/r because K > k.

Case 3: Mr
2

(qH−qL)
(qL−c) ≤ Nr < K − w (or equivalently k/r ≤ N < nH)

Claim: If school 1 invests in quality, then its optimal capacity choice x1 is such that x1 = N .

Proof. Suppose for a contradiction that x1 = N + e where e > 0. This time school 1 randomly
picks a price over the range [p∗1, qH ] with a probability measure µ1 and school 2 randomly
picks a price over the range [p∗2, qL] with a probability measure µ2. Schools’ profit functions
are given by Π1(qH , µ2) = (qH − c)

[
µ̂2
(
M
2 + x1

)
+ (1− µ̂2) (M/2 +N)

]
+ K − rx1 − w and

Π1(p
∗
1, µ2) = (p∗1− c)(x1 + M

2 )+K−rx1−w for school 1 and Π2(qL, µ1) = (qL− c)(M2 +N −x1)
and Π2(p

∗
2, µ1) = (p∗2 − c)(M2 ) for school 2.

This time equilibrium prices must satisfy qH − p∗1 = qL − p∗2. Solving this equality along
with Π1(qL, µ2) = Π1(p

∗
1, µ2), and Π2(qL, µ1) = Π2(p

∗
2, µ1) implies that either µ̂2 = 0, and thus

Π1(qL, µ2) decreases with x1 and the optimal capacity should be x1 = N , or µ̂1 = 0 and µ̂2 ≥ 0.
However, solving for µ̂2 implies that µ̂2 = qH−qL

qH−c −
2(qL−c)(e+N)
M(qH−c) which is less than zero for all

e > 0 whenever kr ≤ N . This contradicts with the optimality of the equilibrium, and thus
school 1’s optimal capacity is x1 = N .

Therefore, school 1’s profit is ΠH = (qH − c)(M2 +N) +K −w−Nr if it invests in quality
and ΠL = (qL − c)(M2 +N) +K −Nr if it invests in capacity. Therefore, investing in quality is
optimal if and only if w ≤ (qH − qL)(M2 +N) which holds for all N and w as long as K < k̄.
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Case 4: Nr < Mr
2

(qH−qL)
(qL−c) (or equivalently Nr < k): In this case, school 1 prefers to select

x1 > N and start a price war. This is true because the profit maximizing capacity (derived
from the profit function ΠH calculated in the previous case) is greater than N , and so price
competition ensues. Therefore, school 1’s profit function is strictly greater than (qH − c)(M2 +
N) + K − w − Nr if it invests in quality. However, if school 1 invests in capacity, then as we
proved in the second case school 1 prefers to choose its capacity as N , and thus its profit would
be ΠL = (qL − c)(M2 +N) +K −Nr. Therefore, school 1 prefers to invest in quality as long as
the first term is greater than or equal to ΠL, implying that w ≤ (qH − qL)(M2 +N) which is less
than K because K < k̄.

Proof of Theorem 1 (High-Saturation Treatment). There are four exhaustive cases we
must consider for the high-saturation treatment and all these cases are summarized in the fol-
lowing figure:

Case 1

Case 2

Case 3
Case 4

2K
r

K
r

Kw∗

H(case 2)

N

w

as K ↗ k̄

w3(Case 3)

as K ↗ k̄

w4(Case 4)

K
(qH + qL − 2c)

(qL − c − r)︸ ︷︷ ︸
>1

+
M(qH−qL)

2(qL−c−r)

K
r

(qH + qL − 2c)

(qL − c − r)︸ ︷︷ ︸
>2

+
M(qH−qL)

2(qL−c−r)

Nr + w = 2K
N
r +

2w
=

2K

Case 1: Suppose that 2K ≤ Nr (or equivalently, 2nL ≤ N): Because the uncovered market
is large, price competition never occurs in this case. Therefore, ΠH = (qH − c)(M2 + K−w

r ) and
ΠL = (qL − c)(M2 + K

r ). Moreover, ΠDev
H = (qL − c)(M2 + K

r ) and ΠDev
L = (qH − c)(M2 + K−w

r ).
To have an equilibrium where one school invests in high quality and the other invests in low

quality, we must have ΠH ≥ ΠDev
H = ΠL and ΠL ≥ ΠDev

L = ΠH implying that w = w∗, which is
less than K because k < K. To have an equilibrium where both schools pick the high quality,
we must have ΠH ≥ ΠDev

H , implying w ≤ w∗. Hence, there exists an equilibrium where at least
one school invests in quality if and only if w ≤ w∗.

Case 2: Suppose that 2K − w ≤ Nr < 2K (or equivalently, nL + nH ≤ N < 2nL): Because
we still gave nH +nH ≤ N , there exists an equilibrium where (H,H) is an equilibrium outcome
for all values of w ≤ w∗. Now, consider an equilibrium where only one school, say school 1,
invests in high quality, and so (H,L) is the outcome. In this case nL + nH ≤ N and no price
competition occurs, so ΠH = (qH − c)(M2 + K−w

r ) and ΠL = (qL − c)(M2 + K
r ). Moreover,

ΠDev
L = (qH − c)(M2 + K−w

r ) because the other school has picked nH and 2nH < N . However,
if school 1 deviates to low quality and picks quantity higher than nL, price competition ensues.
First we prove that it is not optimal for school 1 to pick a large capacity if it deviates to L.
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Claim: Consider an equilibrium strategy where both schools invest in capacity only and x2 =
nL. Then school 1’s optimal capacity choice x1 is such that x1 = N − nL.

Proof. Suppose for a contradiction that x1 = N − nL + e where e > 0. In the mixed strategy
equilibrium each school i randomly picks a price over the range [p∗i , qL] with a probability measure
µi and we have

Π1(qL, µ2) = (qL − c)
[
µ̂2(M/2 + x1)(M +N)

M + x1 + x2
+ (1− µ̂2)

(
M

2
+N − x2

)]
+K − rx1 (1)

and
Π1(p∗1, µ2) = (p∗1 − c)(x1 +M/2) +K − rx1 (2)

where µ̂2 = µ2({qL}). Moreover,

Π2(qL, µ1) = (qL − c)
[
µ̂1(M/2 + x2)(M +N)

M + x1 + x2
+ (1− µ̂1)

(
M

2
+N − x1

)]
+K − rx2 (3)

and
Π2(p∗2, µ1) = (p∗2 − c)(M/2 + x2) +K − rx2 (4)

where µ̂1 = µ1({qL}). In equilibrium we have p∗1 = p∗2, Π1(qL, µ2) = Π1(p
∗
1, µ2), and Π2(qL, µ1) =

Π2(p
∗
2, µ1). Moreover, if µ̂2 = 0, then Π1(qL, µ2) decreases with x1, and thus the optimal capacity

should be x1 = N − x2. Therefore, we must have µ̂1 = 0. Solving for µ̂2 ≥ 0, and then solving
∂Π1(qL, µ2)/∂e = 0 implies

e =
K

r
− N

2
− Mr + 2K

4(qL − c)
.

Because N ≥ (2K −w)/r, e is less than or equal to −K−w
r − Mr+2K

4(qL−c) , which is negative because
K < w, contradicting with the initial assumption that e > 0.

Therefore, if school 1 deviates to low quality, then its payoff is ΠDev
H = (qL − c)(M2 + N −

K
r )−Nr. Thus, there is an equilibrium with one school investing in quality and other investing in
capacity if and only if ΠL ≥ ΠDev

L and ΠH ≥ ΠDev
H , which implies the following two inequalities:

w ≥ w∗ and
w ≤ Mr(qH − qL)

2(qH − c)
+

(qH + qL − 2c)K

qH − c
− Nr(qL − c− r)

qH − c
.

The last condition gives us the line H. Drawing the line H on wN−space implies that the
N -intercept is greater than 2K/r because qH+qL−2c

qL−c−r > 2 and the w-intercept is bigger than K

because qH+qL−2c
qH−c > 1. However, when w = K, H gives the value of M(qH−qL)

2(qL−c−r) + K(qL−c)
r(qL−c−r) for

N which is strictly greater than K/r. However, it is less than or greater than 2K/r depending
on whether Mr(qH−qL)

2(qL−c−2r) is greater or less than K/r. That is, for sufficiently small values of K, H
lies above 2K/r. However, it is easy to verify that H always lies above K/r.

Case 3: Suppose that 2K − 2w ≤ Nr < 2K − w (or equivalently, 2nH ≤ N < nL + nH):
Note that for all values of w ≤ w∗ there exists an equilibrium where (H,H) is an equilibrium
outcome. This is true because ΠH is the same as the one we calculated in Case 1 in the proof
of Theorem 1 (Low-saturation Treatment) but ΠDev

H is much less.
If (H,L) is an equilibrium outcome, then the optimal capacity for school 2 is x2 = N − x1.

The reason for this is that if it ever starts a price war (i.e., a mixing equilibrium), then school 2
will only get the residual demand when it picks the price of qL, implying that its payoff will be
a decreasing function of x2 as long as x2 > N − x1. On the other hand, because schools’ profits
increase with their capacity, as long as there is no price competition, the school 1’s optimal
capacity choice will be x1 = nH = K−w

r . Thus, in an equilibrium where (H,L) is the outcome,

7



the profit functions are ΠH = (qH − c)
(
M
2 + K−w

r

)
and ΠL = (qL − c)

(
M
2 +N − K−w

r

)
+

K − r
(
N − K−w

r

)
. If school 2 deviates to high quality, then its deviation payoff is ΠDev

L =

(qH − c)
(
M
2 +N − K−w

r

)
because 2nH ≤ N . Now we prove that it is not optimal for school 1

to deviate to L and pick a large capacity that will ensue price competition.

Claim: Consider an equilibrium strategy where both schools invest in capacity only and x2 =
N − nH . Then school 1’s optimal capacity choice x1 is such that x1 = nH .

Proof. Suppose for a contradiction that x1 = nH + e where e > 0. In the mixed strategy
equilibrium schools’ profit functions are given by Equations 1-4 of Case 2. Once again, solving
p∗1 = p∗2, Π1(qL, µ2) = Π1(p

∗
1, µ2), and Π2(qL, µ1) = Π2(p

∗
2, µ1) imply that if µ̂2 = 0, then

Π1(qL, µ2) decreases with x1, and so the optimal capacity should be x1 = N − x2. Therefore,
we must have µ̂1 = 0. Solving for µ̂2 ≥ 0, and then solving ∂Π1(qL, µ2)/∂e = 0 implies

e =
N(qL − c− r)

2(qL − c)
+
w(2qL − 2c− r)

2r(qL − c)︸ ︷︷ ︸
e1

−K(2qL − 2c− r)
r(ql − c)

− Mr

4(qL − c)
.

which is strictly less than zero because e1 ≤
(
w
2r + N

2

) (2qL−2c−r)
(qL−c) and it is less than K

r
(2qL−2c−r)

(qL−c)
because we are in the region where w + Nr < 2K. However, e < 0 contradicts with our initial
assumption.

Therefore, x1 = nH is the optimal choice for school 1 if it deviates to low quality, and thus
we have ΠDev

H = (qL−c)
(
M
2 + K−w

r

)
+w. To have an equilibrium outcome (H,L) we must have

Πq ≥ ΠDev
q for each q ∈ {H,L}. Equivalently,

(qL − c− r)N +
w

r
(qH + qL − 2c− r) ≥ (qH − qL)

(
M

2
+
K

r

)
− 2K

and
(qH − qL)

(
M

2
+
K

r

)
≥ w

r
(qH − qL + r).

It is easy to verify that the first inequality holds for all w ≥ w∗ and N ≥ 0. The second inequal-
ity implies w ≤ (qH−qL)r

(qH−qL+r)
(
M
2 + K

r

)
≡ w3 which is strictly higher than K whenever K ≤ k̄.

Case 4: Suppose that Nr < 2K − 2w (or equivalently, N < 2nH): We will prove, for all
parameters in this range, that there exists an equilibrium where both schools invest in quality
and x1 = x2 = N/2. For this purpose, we first show that school 1’s best response is to pick
x1 = N/2 in equilibrium where both schools invest in quality and x2 = N/2. Suppose for
a contradiction that school 1 picks x1 = N/2 + e where e > 0. Then in the mixed strategy
equilibrium of the pricing stage, each school i randomly picks a price over the range [p∗i , qH ]
with a probability measure µi and the profit functions are given by

Π1(qH , µ2) = (qH − c)

[
µ̂2(

M
2 + x1)(M +N)

M + x1 + x2
+ (1− µ̂2)

(
M

2
+N − x2

)]
+K − rx1 − w

where µ̂2 = µ2({qH}) and Π1(p
∗
1, µ2) = (p∗1− c)(x1 +M/2)−+K− rx1−w. On the other hand,

Π2(qH , µ1) = (qH − c)

[
µ̂1(

M
2 + x2)(M +N)

M + x1 + x2
+ (1− µ̂1)

(
M

2
+N − x1

)]
+K − rx2 − w
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where µ̂1 = µ1({qH}) and Π2(p
∗
2, µ1) = (p∗2 − c)(x2 +M/2) +K − rx2 − w.

Once again, solving p∗1 = p∗2, Π1(qH , µ2) = Π1(p
∗
1, µ2), and Π2(qH , µ1) = Π2(p

∗
2, µ1) imply

that if µ̂2 = 0, then Π1(qL, µ2) decreases with x1, and so the optimal capacity should be
x1 = N − x2. Therefore, we must have µ̂1 = 0. Solving for µ2 ≥ 0 yields µ̂2 = −4e(e+M+N)

(M+N)2

which is clearly negative for all values of e > 0, yielding the desired contradiction. Therefore,
school 1’s optimal capacity choice is x1 = N − x2 = N/2.

In equilibrium with (H,H) and xi = N/2 for i = 1, 2, profit function is ΠH = (qH −
c)
(
M+N

2

)
+K −w− Nr

2 . However, if a school deviates to low quality, then its optimal capacity
choice would still be N/2 because entering into price war is advantageous for the opponent,
making profit of the deviating school a decreasing function of its own capacity (beyond N/2).
Therefore, ΠDev

H = (qL − c)
(
M+N

2

)
+ K − Nr

2 . Thus, no deviation implies that w ≤ (qH −
qL)
(
M+N

2

)
≡ w4 which holds for all w ≤ k̄ and N ≥ 0. That is, for all the parameters of

interest, (H,H) is an equilibrium outcome.
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A.2 Generalization of the Model

Suppose that each of T students has a taste parameter for quality θj that is uniformly distributed
over [0, 1] and rest of the model is exactly the same as before. Therefore, if the schools have
quality q and price p, then demand is D(p) = T (1 − p

q ). We adopt the rationing rule of
Kreps and Scheinkman (1983), henceforth KS. In what follows, we first characterize the second
stage equilibrium prices (given the schools’ quality and capacity choices), and thus calculate
the schools’ equilibrium payoffs as a function of their quality and capacity. We do not need to
characterize equilibrium prices when the schools’ qualities are the same because they are given
by KS. For that reason, we will only provide the equilibrium prices when schools’ qualities are
different. After the second stage equilibrium characterization, we prove, for a reasonable set
of parameters, that if the treated school in the L arm invests in quality then at least one of
the schools in the H arm must invest in quality. We prove this result formally for the case
w = K, which significantly reduces the number of cases we need to consider. Therefore, even
when the cost of quality investment is very high, quality investment in the H arm is optimal if
it is optimal in the L arm. There is no reason to suspect that our result would be altered if the
cost of quality investment is less than the grant amount, and thus we omit the formal proof for
w < K. To build intuition, consider the following modification of the example in the main text
to 10 consumers, A to J , who value low quality in descending order:

Consumers A B C D E F G H I J
Value for low quality 10 9 8 7 6 5 4 3 2 1

where A values low quality at $10 and J at $1. Following KS, the rationing rule allocates
consumers to schools in order of maximal surplus.1 Fix the capacity of the first school at 2 and
let the capacity of the second school increase from 1 to 6. As School 2’s capacity increases from
1 to 5, equilibrium prices in the second stage drop from $8 to $4 as summarized in the next
table:2

Capacity of School 2 1 2 3 4 5 6
NE prices 8 7 6 5 4 mixed

The reason for the existence of pure strategy equilibrium prices is provided by Proposition 1 of
KS that the schools’ unique equilibrium price is the market clearing price whenever both schools’
capacity is less than or equal to their Cournot best response capacities.3 But, once school 2’s
capacity increases to 6, there is no pure strategy NE.4 The threat of mixed strategy equilibrium
prices forces schools to not expand their capacities beyond their Cournot optimal capacities.5

Equilibrium Prices when Qualities are the Same

Following this basic intuition, when both schools’ qualities are the same in the first stage, we
are in the KS world, where the schools’ optimal capacity choices will be equal to their Cournot

1Suppose that both schools have a capacity of 2 and school 1 charges $7 and School 2 charges $9. Then, the
rationing rule implies that consumers A and B will choose School 1 since they obtain a higher surplus by doing
so and consumer C is rationed out of the market.

2For example, the equilibrium price is $8 when School 2 capacity is 1 because if school 1 charges more than
$8, given the rationing rule, A derives maximal surplus from choosing school 2 and School 1’s enrollment declines
to 1. A lower price also decreases profits since additional demand cannot be met through existing capacity.

3Given that school 1’s capacity is 2, school 2’s Cournot best response capacity is both 4 and 5 (if only integer
values are allowed).

4Now p = $3 is no longer a NE, since school 2 can increase profits by charging $4 and serving 5 students
rather than charging $3 and enrolling 6 students. But, $4 is not a NE either, since $4 − ε will allow 6 students
to enroll for a profit just below $4× 6 = 24.

5In our example, suppose now that schools can also offer high quality, which doubles consumer valuation (A
values low quality at $10 but high quality at $20). Now, when School 1 has a capacity of 2 and school 2 has a
capacity of 6, in an equilibrium where school 2 chooses high quality, school 1 charges $3 and caters to consumers
G and H and school 2 charges $9 and caters to consumers A through F .
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quantity choices in the absence of credit constraint. However, if schools are credit constrained,
then they will choose their capacities according to their capital up to their Cournot capacity.

In the Cournot version of our model, when schools’ quantities are x1 and x2, the market
price is P (x1 + x2) = q(1 − x1 + x2). Therefore, the best response function for school with no
capacity cost is

B(y) = arg max
0≤x≤1−y

{xTP (x+ y)}

which implies that

B(y) =
1− y

2
.

According to Proposition 1 of KS, if xi ≤ B(xj) for i, j = 1, 2 and i 6= j, then a subgame
equilibrium is for each school to name price P (x1 + x2) with probability one. The equilib-
rium revenues are xiP (x1 + x2) for school i. However, if xi ≥ xj and xi > B(xj), then
the price equilibrium is randomized (price war) and school i’s expected revenue is R(xj) =
B(xj)P (B(xj) + xj), i.e., school i cannot fully utilize its capacity, and school j’s profit is some-
where between [

xj
xi
R(xj), R(xj)].

Equilibrium Prices when Qualities are Different

Suppose that one school has quality qH and the other school has quality qL. Let xH and xL
denote these schools’ capacity choices and pH and pL be their prices, where pL

qL
≤ pH

qH
. The next

figure summarizes students’ preferences as a function of their taste parameter θ ∈ [0, 1].

0 1pL
qL

pH
qH

pH−pL
qH−qL

students willing to go to (any) school
students willing to go to High

prefer High to Lowprefer Low to High

Figure 1: Student’s preferences over the space of taste parameter

Therefore, demand for the high quality school is DH = 1− pH−pL
qH−qL and enrollment is eH =

min
(
xH , 1− pH−pL

qH−qL

)
. Demand for the low quality school is

DL =

{
pH−pL
qH−qL −

pL
qL
, if xH ≥ 1− pH−pL

qH−qL
1− pL

qL
− xH , otherwise,

and enrollment of the low quality school is eL = min
(
xL,max

(
pH−pL
qH−qL −

pL
qL
, 1− pL

qL
− xH

))
.

Best response prices: Next, we find the best response functions for the schools given their
first stage choices, qH , qL, xH and xL. The high quality school’s profit is pHeH which takes its
maximum value at pH = qH−qL+pL

2 . Therefore, the best response price for the high quality
school is PH(pL) = qH−qL+pL

2 whenever the school’s capacity does not fall short of the demand
at these prices, i.e. pL ≤ (qH − qL)(2xH − 1). Otherwise, i.e. pL > (qH − qL)(2xH − 1), we have
PH(pL) = pL + (1− xH)(qH − qL). To sum,

PH(pL) =

{ qH−qL+pL
2 , if pL ≤ (qH − qL)(2xH − 1)

pL + (1− xH)(qH − qL), otherwise.

Now, given xH , xL and pH , we find the best response price for the low quality school, pL.
We know that if xH ≥ 1− pH−pL

qH−qL , then the enrollment is eL = min
(
xL,

pH−pL
qH−qL −

pL
qL

)
. However,

11



if xH < 1 − pH−pL
qH−qL , then the enrollment is eL = min

(
xL, 1− pL

qL
− xH

)
. Therefore, the profit

functions are as follows:

1) xH ≥ 1− pH−pL
qH−qL

(i) If xL < pH−pL
qH−qL −

pL
qL
, then eL = xL, and so ΠL = pLxL.

(ii) If xL ≥ pH−pL
qH−qL −

pL
qL
, then eL = pH−pL

qH−qL −
pL
qL
, and so ΠL = pL

(
pH−pL
qH−qL −

pL
qL

)
.

2) xH < 1− pH−pL
qH−qL

(i) If xL < 1− pL
qL
− xH , then eL = xL, and so ΠL = pLxL.

(ii) If xL ≥ 1− pL
qL
− xH , then eL = 1− pL

qL
− xH , and so ΠL = pL

(
1− pL

qL
− xH

)
.

Profit maximizing pL’s yield the following best response function:

PL(pH) =


pHqL
2qH

, if xH ≥ 1− pH−pL
qH−qL and pH ≤ 2xL(qH − qL)

pHqL−xLqL(qH−qL)
qH

, if xH ≥ 1− pH−pL
qH−qL and pH > 2xL(qH − qL)

(1−xH)qL
2 , if xH < 1− pH−pL

qH−qL and xH + 2xL ≥ 1

qL(1− xL − xH), if xH < 1− pH−pL
qH−qL and xH + 2xL < 1

Finding Optimal Prices: Solving the best response functions simultaneously implies working
out the following eight cases:

Case 1: Consider the parameters satisfying

pL ≤ (qH − qL)(2xH − 1) (5)

so that the best response function for the high quality school is PH(pL) = qH−qL+pL
2 . We need

to consider the following four sub-cases:

Case 1.1: Consider the parameters satisfying

xH ≥ 1− pH − pL
qH − qL

(6)

pH ≤ 2xL(qH − qL) (7)

so that the best response function for the low quality school is PL(pH) = pHqL
2qH

. Solving the best
response functions simultaneously yields

pL =
qL(qH − qL)

4qH − qL

pH =
2qH(qH − qL)

4qH − qL

Therefore, the inequalities (5) and (6) yield xH ≥ 2qH
4qH−qL and equation (7) yields xL ≥ qH

4qH−qL .

Case 1.2: Consider the parameters satisfying

xH ≥ 1− pH − pL
qH − qL

(8)

pH > 2xL(qH − qL) (9)
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so that the best response function for the low quality school is PL(pH) = pHqL−xLqL(qH−qL)
qH

.
Solving them simultaneously yields

pL =
qL(qH − qL)(1− 2xL)

2qH − qL

pH =
(qH − qL)(qH − qLxL)

2qH − qL

Therefore, the inequalities (5) and (8) yield qH ≤ qLxL + (2qH − qL)xH and equation (9) yields
xL <

qH
4qH−qL .

Case 1.3: Consider the parameters satisfying

xH < 1− pH − pL
qH − qL

(10)

1 ≤ xH + 2xL (11)

so that the best response function for the low quality school is PL(pH) = (1−xH)qL
2 . Solving

them simultaneously yields

pL =
(1− xH)qL

2

pH =
qH − qL

2
+
qL(1− xH)

4

The inequality (10) yields xH < 2qH−qL
4qH−3qL and the inequality (5) yields xH ≥ 2qH−qL

4qH−3qL , which can-
not be satisfied simultaneously. Therefore, there cannot exist an equilibrium for the parameter
values satisfying inequalities (5), (10) and (11).

Case 1.4: Consider the parameters satisfying

xH < 1− pH − pL
qH − qL

(12)

1 > xH + 2xL (13)

so that the best response function for the low quality school is PL(pH) = qL(1 − xH − xL).
Solving them simultaneously yields

pL = qL(1− xH − xL)

pH =
qH − qL(xL + xH)

2

The inequality (12) yields xH < qH−qLxL
2qH−qL and the inequality (5) yields xH ≥ qH−qLxL

2qH−qL , which can-
not be satisfied simultaneously. Therefore, there cannot exist an equilibrium for the parameter
values satisfying inequalities (12), (13) and (5).

Case 2: Now, consider the parameters satisfying

pL > (qH − qL)(2xH − 1) (14)

so that the best response function for the high quality school is PH(pL) = pL+(1−xH)(qH−qL).
We need to consider the following four sub-cases:
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Case 2.1: Consider the parameters satisfying

xH ≥ 1− pH − pL
qH − qL

(15)

pH ≤ 2xL(qH − qL) (16)

so that the best response function for the low quality school is PL(pH) = pHqL
2qH

. Solving the best
response functions simultaneously yields

pL =
qL(qH − qL)(1− xH)

2qH − qL

pH =
2qH(qH − qL)(1− xH)

2qH − qL

Therefore, the inequalities (14), (15), and (16) yield xH < 2qH
4qH−qL , xH ≥ xH , and qHxH+(2qH−

qL)xL ≥ qH respectively.

Case 2.2: Consider the parameters satisfying

xH ≥ 1− pH − pL
qH − qL

(17)

pH > 2xL(qH − qL) (18)

so that the best response function for the low quality school is PL(pH) = pHqL−xLqL(qH−qL)
qH

.
Solving them simultaneously yields

pL = qL(1− xH − xL)

pH = (1− xH)qH − xLqL

Therefore, the inequalities (14), (17), and (18) yield qH > xLqL + xH(2qH − qL), xH ≥ xH , and
qHxH + (2qH − qL)xL < qH respectively.

Case 2.3: Consider the parameters satisfying

xH < 1− pH − pL
qH − qL

(19)

1 ≤ xH + 2xL (20)

so that the best response function for the low quality school is PL(pH) = (1−xH)qL
2 . Solving

them simultaneously yields

pL =
(1− xH)qL

2

pH = (1− xH)(qH −
qL
2

)

The inequality (19) yields xH < xH implying that there cannot exist an equilibrium for the
parameter values satisfying inequalities (14), (19), and (20).
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Case 2.4: Consider the parameters satisfying

xH < 1− pH − pL
qH − qL

(21)

1 > xH + 2xL (22)

so that the best response function for the low quality school is PL(pH) = qL(1 − xH − xL).
Solving them simultaneously yields

pL = qL(1− xH − xL)

pH = (1− xH)qH − qLxL

The inequality (21) yields xH < xH implying that there cannot exist an equilibrium for the
parameter values satisfying inequalities (14), (21), and (22).

Summary of the Equilibrium: The equilibrium prices can be summarized in the following
picture where

Region 1: Parameters satisfy xH ≥ 2qH
4qH−qL and xL ≥ qH

4qH−qL . Equilibrium prices are

pL = qL(qH−qL)
4qH−qL and pH = 2qH(qH−qL)

4qH−qL . Therefore, enrollment and revenue (per student)

of the high quality school are eH = 2qH
4qH−qL and ΠH =

4q2H(qH−qL)
(4qH−qL)2 . Note that this is not

the profit function of the high quality school, and so the cost of choosing capacity xH and
high quality are excluded.

Region 2: Parameters satisfy xL < qH
4qH−qL and qLxL + (2qH − qL)xH ≥ qH . Equilibrium

prices are pL = qL(qH−qL)(1−2xL)
2qH−qL and pH = (qH−qL)(qH−qLxL)

2qH−qL . Therefore, enrollment and
revenue (per student) of the high quality school are eH = qH−qLxL

2qH−qL and ΠH = (qH −
qL) (qH−qLxL)

2

(2qH−qL)2 .

Region 3: Parameters satisfy xH < 2qH
4qH−qL and qHxH +(2qH − qL)xL ≥ qH . Equilibrium

prices are pL = qL(qH−qL)(1−xH)
2qH−qL and pH = 2qH(qH−qL)(1−xH)

2qH−qL . Therefore, enrollment and

revenue of the high quality school are eH = xH and ΠH = 2qH(qH−qL)(1−xH)xH
2qH−qL . Moreover,

the profit of the low quality school is ΠL = pL

(
pH−pL
qH−qL −

pL
qL

)
= qHqL(qH−qL)(1−xH)2

(2qH−qL)2 .

Region 4: Parameters satisfy qHxH +(2qH−qL)xL < qH and qLxL+(2qH−qL)xH < qH .
Equilibrium prices are pL = qL(1 − xH − xL) and pH = (1 − xH)qH − xLqL. Enrollment
and revenue of the high quality school are eH = xH and ΠH = xH [(1 − xH)qH − xLqL].
Enrollment and revenue of the low quality school are eL = xL and ΠL = pLxL = qL(1 −
xH − xL)xL.
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Region 1

Region 3

Region 2

Region 4

1

qH
2qH−qL

2qH
4qH−qL

1
2

qH
4qH−qL

1
2

qH
2qH−qL

qH
qL

1

xH

xL

The First Stage Equilibrium: Quality and Capacity

Now we consider the first stage equilibrium strategies. In the baseline, we still assume that
schools do not have enough capital to adopt high quality, and thus both schools are of low
quality. Moreover, the schools’ initial capacity is x1 = x2 = M

2 . Therefore, the baseline market
price is P (M) = qL(1 −M). We make the following two assumptions regarding the size of the
covered market, M :

Assumption 1: 2 ≤ TM . That is, total private school enrollment is at least 2.

Assumption 2: M
2 ≤

1
3

(
1− r

qL

)
.

Assumption 3: K
Tr + M

2 ≤
2qH

4qH−qL .
If the second assumption does not hold, then the treated school in the L arm would prefer

not to increase its capacity. This assumption implies that schools do not have enough capital to
pick their Cournot optimal capacities at baseline. If the third assumption does not hold, then
the treated school can increase its capacity to the level where it can cover more than half of
the market. We impose these three assumptions simply because parameters that do not satisfy
them seem irrelevant for our sample. We also like to note the following observations that help
us to pin down what the equilibrium prices will be when schools’ quality choices are different.

Observation 1: x1 = x2 = M
2 satisfy the constraint qHx1+x2(2qH−qL) < qH if assumption

2 holds.
Observation 2: 2qH

4qH−qL > 1
2 , and so M

2 < 2qH
4qH−qL .

Therefore, the schools would be in Region 4 with their baseline capacities. If school 1
receives a grant and invests in quality and capacity, then the schools either stay in Region 4,
i.e. school 1 picks its quality such that xH , xL satisfies the constraints of Region 4, or move to
Region 2. However, the next result shows that schools will always stay in Region 4, both in the
H and L arms, if the schools’ quality choices are different.

Lemma 1. Both in low and high saturation treatment, if schools’ quality choices are different,
then their equilibrium capacities xL and xH must be such that both qHxH + xL(2qH − qL) < qH
and qLxL + xH(2qH − qL) < qH hold.

Proof. Whether it is the low or high saturation treatment, suppose that school 1 receives the
grant and invests in higher quality while school 2 remains in low quality. We know by assump-
tion 3 that school 1’s final capacity will never be above 2qH/(4qH − qL). Therefore, schools’
equilibrium capacities xH and xL will be in Region 4 or in Region 3. Next, we show that school
2 will never pick its capacity high enough to move Region 3 even if it can afford it.
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School 2’s profit, if it picks x such that x+ M
2 and xH remains in Region 4, is

ΠL = TqL(x+
M

2
)(1− xH −

M

2
− x) +K − Trx.

The first order conditions imply that the optimal (additional) capacity is 1−xH−r/qL
2 − M

2 or
less if the grant is not large enough to cover this additional capacity. On the other hand, the
capacity school 2 needs to move to Region 3, xL, must satisfy xL ≥ qH(1−xH)

2qH−qL , which is strictly
higher x + M

2 . Therefore, given school 1’s choice, school 2’s optimal capacity will be such that
schools remain in Region 4.

On the other hand, if school 2 could pick the capacity required to move into Region 3, the
profit maximizing capacity would be qH(1−xH)

2qH−qL because school 2’s profit does not depend on its
capacity beyond this level. Therefore, the profit under this capacity level would be

Π3 =
TqH(1− xH)

2qH − qL

(
qL(qH − qL)(1− xH)

2qH − qL
− r
)
− TrM

2
.

However, if school 2 picks x and remains in Region 4, then its profit would be

Π4 =
TqL

2

(
1− xH −

r

qL

)2

− TrM
2
.

The difference yields

Π3 −Π4 = −
T (2qHr + q2L(1− xH)− qLr)2

4qL(2qH − qL)2
< 0

implying that school 2 prefers to choose a lower capacity and remain in Region 4 even if it can
choose a higher capacity.

Theorem 2. If the treated school in the low saturation treatment invests in quality, then there
must exist an equilibrium in the high saturation treatment where at least one school invests in
quality. However, the converse is not always true.

Proof. We prove our claim for w = K.
Low saturation treatment: If school 1 invests in quality its profit is

ΠH
Low =

TM

2

[(
1− M

2

)
qH −

M

2
qL

]
However, if school 1 invests in capacity, then its optimal capacity choice is xl = 1

2

(
1− 3M

2 −
r
qL

)
and profit is

ΠL
Low =


K + T

[
(2−M)2

16 qL − (2−3M)
4 r + r2

4qL

]
, if xl ≤ min

(
K
Tr , B(M2 )

)
TqL

(
K
Tr + M

2

) (
1−M − K

Tr

)
, if K

Tr < xl ≤ B(M2 )

TqL
(
B(M2 ) + M

2

) (
1−M −B(M2 )

)
+K − TrB(M2 ), if B(M2 ) < min

(
xl, KTr

)
High saturation treatment with (H,L) Equilibrium: We are trying to create an equilibrium

where at least one school invests in high quality. In an equilibrium where only one school invests
in quality, the low quality school’s optimal capacity choice is xl = 1

2

(
1− 3M

2 −
r
qL

)
and profit
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is

ΠL
(H,L) =


K + T

[
(2−M)2

16 qL − (2−3M)
4 r + r2

4qL

]
, if xl ≤ min

(
K
Tr , B(M2 )

)
TqL

(
K
Tr + M

2

) (
1− K

Tr −M
)
, if K

Tr < xl ≤ B(M2 )

TqL
(
B(M2 ) + M

2

) (
1−B(M2 )−M

)
+K − TrB(M2 ), if B(M2 ) < min

(
xl, KTr

)
On the other hand, the high quality school’s equilibrium profit is

ΠH
(H,L) =

TM

2

[(
1− M

2

)
qH − xLqL

]
where

xL =


M
2 + xl, if xl ≤ min

(
K
Tr , B(M2 )

)
M
2 + K

Tr , if K
Tr < xl ≤ B(M2 )

M
2 +B(M2 ), if B(M2 ) < min

(
xl, KTr

)
Deviation payoffs from (H,L): If the low type deviates to high quality, then we are back in

KS world, and thus its (highest) deviation payoff will be

Π̂L
(H,L) =

TM

2
(1−M)qH .

However, if the high quality school deviates to low quality, then we are again in KS world.
Thus, given that the other school’s capacity is xL, deviating school’s optimal capacity is x̂ =
1
2

(
1−M − xL − r

qL

)
and optimal profit is

Π̂H
(H,L) =


K + T

[
(1−xL)2

4 qL − (1−xL−M)
2 r + r2

4qL

]
, if x̂ ≤ min

(
K
Tr , B(xL)

)
TqL

(
K
Tr + M

2

) (
1− M

2 − xL −
K
Tr

)
, if K

Tr < x̂ ≤ B(xL)

TqL
(
B(xL) + M

2

) (
1− M

2 − xL −B(xL)
)

+K − TrB(xL), if B(xL) < min
(
x̂, KTr

)
High saturation treatment with (H,H) Equilibrium: Because w = K, schools cannot in-

crease their capacities. Moreover, we are in KS world, and so the equilibrium payoff is

Π(H,H) =
TM

2
(1−M)qH .

Deviation payoffs from (H,H): If a school deviates then the payoff is identical with the equi-
librium of (H,L). Therefore, the deviating school’s optimal capacity is xl = 1

2

(
1− 3M

2 −
r
qL

)
and profit is

Π̂(H,H) =


K + T

[
(2−M)2

16 qL − (2−3M)
4 r + r2

4qL

]
, if xl ≤ min

(
K
Tr , B(M2 )

)
TqL

(
K
Tr + M

2

) (
1− K

Tr −M
)
, if K

Tr < xl ≤ B(M2 )

TqL
(
B(M2 ) + M

2

) (
1−B(M2 )−M

)
+K − TrB(M2 ), if B(M2 ) < min

(
xl, KTr

)
Note the following:

Claim 1. If xl < min
(
K
Tr , B(M2 )

)
, then x̂ < min

(
K
Tr , B(xL)

)
.

Proof. Assume that xl satisfies the above inequality. Then xL = M
2 + xl, B(xL) = B(M2 )− xl

2 ,
and x̂ = xl

2 , which is less than K
Tr . Moreover, x̂ < B(xL) because xl < B(M2 ), and thus the

desired result.

Claim 2. If K
Tr < xl ≤ B(M2 ), then either x̂ < min

(
K
Tr , B(xL)

)
or K

Tr < x̂ ≤ B(xL).
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Proof. In this case xL = M
2 + K

Tr , B(xL) = B(M2 )− K
2Tr , and x̂ = xl − K

2Tr . Therefore, we have
x̂ ≤ B(xL) because xl < B(M2 ). However, x̂ may be greater or less than K

Tr , hence the desired
result.

Claim 3. If B(M2 ) < min
(
K
Tr , x

l
)
, then B(xL) < min

(
K
Tr , x̂

)
.

Proof. In this case xL = M
2 + B(M2 ), B(xL) = 1

2B(M2 ), and x̂ = xl − 1
2B(M2 ), Therefore, we

have x̂ > B(xL) and B(xL) < B(M2 ) < K
Tr , and thus the desired result.

Lemma 1. Suppose that xl ≤ min
(
K
Tr , B(M2 )

)
and x̂ ≤ min

(
K
Tr , B(xL)

)
. If the treated school in

the low saturation treatment invests in quality, then there is an equilibrium in the high saturation
treatment such that at least one school invests in quality.

Proof. For the given parameter values we know that the optimal capacity of the low quality
school in low saturation treatment is xl, and thus xL = M

2 + xl and x̂ = xl

2 . Assume that the
treated school in the low saturation treatment invests in quality. Then we must have

ΠH
Low ≥ ΠL

Low

or equivalently, TM
2

[(
1− M

2

)
qH − M

2 qL
]
≥ K + T

[
(2−M)2

16 qL − (2−3M)
4 r + r2

4qL

]
. We need to

show that either (H,L) or (H,H) is an equilibrium outcome. Equivalently, we need to prove
that either the inequalities in (1) or (2) below hold:

(1) Both the low and high quality schools do not deviate from (H,L), i.e.,

ΠL
(H,L) ≥ Π̂L

(H,L) and ΠH
(H,L) ≥ Π̂H

(H,L).

Equivalently, K + T
[
(2−M)2

16 qL − (2−3M)
4 r + r2

4qL

]
≥ TM

2 (1−M)qH and
TM
2

[(
1− M

2

)
qH − xLqL

]
≥ K + T

[
(1−xL)2

4 qL − (1−xL−M)
2 r + r2

4qL

]
hold.

(2) Alternatively, the schools do not deviate from (H,H), that is

Π(H,H) ≥ Π̂(H,H)

or equivalently, TM2 (1−M)qH ≥ K + T
[
(2−M)2

16 qL − (2−3M)
4 r + r2

4qL

]
.

Note that if ΠL
(H,L) < Π̂L

(H,L), then the inequality in (2) holds, and so we have an equilibrium
where both schools pick high quality. Inversely, if the inequality in (2) does not hold, then
ΠL

(H,L) ≥ Π̂L
(H,L), i.e., the low quality school does not deviate from (H,L). If we show that the

high quality school also doesn’t deviate from (H,L), then we complete our proof. Because ΠH
Low ≥

ΠL
Low, showing ΠH

(H,L)−ΠH
Low ≥ Π̂H

(H,L)−ΠL
Low would prove that the second inequality in (1) holds

as well. Therefore, we will prove that ΠH
Low−ΠH

(H,L)+Π̂H
(H,L)−ΠL

Low = TMqL
2 xl+Π̂H

(H,L)−ΠL
Low ≤ 0.

TMqL
2

xl + Π̂H
(H,L) −ΠL

Low =
TqL

4
xl
[
r

qL
− 2 + 3M + xl

]
=
TqL

4
xl
[
r

2qL
− 3

2
+

3M

2

]
since xl =

1

2

(
1− 3M

2
− r

qL

)
≤ TqL

4
xl
[
− r

2qL
− 1

2

]
since

3M

2
≤ 1− r

qL
by Assumption 2

< 0.

Thus, either (H,L) or (H,H) is an equilibrium outcome.
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Lemma 2. Suppose that K
Tr < xl ≤ B(M2 ) and x̂ ≤ min

(
K
Tr , B(xL)

)
. If the treated school in

low saturation treatment invests in quality, then there is an equilibrium in the high saturation
treatment such that at least one school invests in quality.

Proof. For the given parameter values we know that the optimal capacity of the low quality
school is xl is greater than K

TR , and thus xL = M
2 + K

Tr . Moreover, because x̂ < min
(
K
Tr , B(xL)

)
holds, we have xl < 3K

2Tr . Assume that the treated school in the low saturation treatment invests
in quality. Then we must have

ΠH
Low ≥ ΠL

Low

or equivalently, TM
2

[(
1− M

2

)
qH − M

2 qL
]
≥ TqL

(
K
Tr + M

2

) (
1−M − K

Tr

)
. Then we need to

show that either (H,L) or (H,H) is an equilibrium. Equivalently, we need to show that either
the inequalities in (1) or (2) below hold:

(1) Both the low and high quality schools do not deviate from (H,L), i.e.,

ΠL
(H,L) ≥ Π̂L

(H,L) and ΠH
(H,L) ≥ Π̂H

(H,L).

Equivalently, TqL
(
K
Tr + M

2

) (
1−M − K

Tr

)
≥ TM

2 (1−M)qH and
TM
2

[(
1− M

2

)
qH − xLqL

]
≥ K + T

[
(1−xL)2

4 qL − (1−xL−M)
2 r + r2

4qL

]
hold.

(2) Alternatively, the schools do not deviate from (H,H), that is

Π(H,H) ≥ Π̂(H,H)

or equivalently, TM2 (1−M)qH ≥ TqL
(
K
Tr + M

2

) (
1−M − K

Tr

)
.

Note that if ΠL
(H,L) < Π̂L

(H,L), then the inequality in (2) holds, and so we have an equilibrium
where both schools pick high quality. Inversely, if the inequality in (2) does not hold, then
ΠL

(H,L) ≥ Π̂L
(H,L), i.e., the low quality school does not deviate from (H,L). If we show that the

high quality school also doesn’t deviate from (H,L), then we complete our proof. Because ΠH
Low ≥

ΠL
Low, showing ΠH

(H,L)−ΠH
Low ≥ Π̂H

(H,L)−ΠL
Low would prove that the second inequality in (1) holds

as well. Therefore, we will prove that ΠH
Low−ΠH

(H,L) +Π̂H
(H,L)−ΠL

Low = KMqL
2r +Π̂H

(H,L)−ΠL
Low ≤ 0.

KMqL
2r

+ Π̂H
(H,L) −ΠL

Low =
T

16qL
(2r − (2− 3M)qL)2︸ ︷︷ ︸

= TqL(xl)2

+
3K

4r
(2r − (2− 3M)qL)︸ ︷︷ ︸

− 3KqLxl

r

+
5K2qL
4r2T

=
KqL
r

(
Tr

K
(xl)2 − 3xl +

5K

4Tr

)
≤ KqL

r

(
Tr

K
(xl)2 − 3xl +

5

4
xl
)

since
K

Tr
< xl

=
KqL
r

(
Tr

K
(xl)2 − 7

4
xl
)

≤ KqL
r

(
3

2xl
(xl)2 − 7

4
xl
)

since xl <
3K

2Tr

< 0.

Thus, either (H,L) or (H,H) is an equilibrium outcome.

Lemma 3. Suppose that K
Tr < xl ≤ B(M2 ) and K

Tr < x̂ ≤ B(xL). If the treated school in the
low saturation treatment invests in quality, then there is an equilibrium in the high saturation
treatment such that at least one school invests in quality.
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Proof. Assume that the treated school in the low saturation treatment invests in quality. Then
we must have

ΠH
Low ≥ ΠL

Low

or equivalently, TM
2

[(
1− M

2

)
qH − M

2 qL
]
≥ TqL

(
K
Tr + M

2

) (
1−M − K

Tr

)
. Then we need to

show that either (H,L) or (H,H) is an equilibrium. Equivalently, we need to show that either
the inequalities in (1) or (2) below hold:

(1) Both the low and high quality schools do not deviate from (H,L), i.e.,

ΠL
(H,L) ≥ Π̂L

(H,L) and ΠH
(H,L) ≥ Π̂H

(H,L).

Equivalently, TqL
(
K
Tr + M

2

) (
1−M − K

Tr

)
≥ TM

2 (1−M)qH and TM
2

[(
1− M

2

)
qH − xLqL

]
≥

TqL
(
K
Tr + M

2

) (
1−M − xL − K

Tr

)
hold.

(2) Alternatively, the schools do not deviate from (H,H), that is

Π(H,H) ≥ Π̂(H,H)

or equivalently, TM2 (1−M)qH ≥ TqL
(
K
Tr + M

2

) (
1−M − K

Tr

)
.

Same as before if we show that the high quality school doesn’t deviate from (H,L), i.e.,
ΠH

Low −ΠH
(H,L) + Π̂H

(H,L) −ΠL
Low = KMqL

2r + Π̂H
(H,L) −ΠL

Low ≤ 0, then we complete our proof.

KMqL
2r

+ Π̂H
(H,L) −ΠL

Low =
KMqL

2r
+ TqL

(
K

Tr
+
M

2

)(
− K
Tr

)
=
KqL
r

(
M

2
− K

Tr
− M

2

)
< 0.

Thus, either (H,L) or (H,H) is an equilibrium outcome.

Lemma 4. Suppose that B(M2 ) < min
{
K
Tr , x

l
}
and B(xL) < min

{
K
Tr , x̂

}
. If the treated school

in the low saturation treatment invests in quality, then there is an equilibrium in the high satu-
ration treatment such that at least one school invests in quality.

Proof. For the given parameter values B(M2 ) = 1
2 −

M
4 , xL = M

2 +B(M2 ), and B(xL) = 1
2B(M2 ).

Assume that the treated school in the low saturation treatment invests in quality. Then we must
have ΠH

Low ≥ ΠL
Low or equivalently, TM2

[(
1− M

2

)
qH − M

2 qL
]
≥ TqL

(
B(M2 ) + M

2

) (
1−M −B(M2 )

)
+

K−TrB(M2 ). Then we need to show that either (H,L) or (H,H) is an equilibrium. Equivalently,
we need to show that either the inequalities in (1) or (2) below hold:

(1) Both the low and high quality schools do not deviate from (H,L), i.e., ΠL
(H,L) ≥ Π̂L

(H,L)

and ΠH
(H,L) ≥ Π̂H

(H,L). Equivalently, TqL
(
B(M2 ) + M

2

) (
1−M −B(M2 )

)
+K − TrB(M2 ) ≥

TM
2 (1−M)qH and
TM
2

[(
1− M

2

)
qH − xLqL

]
≥ TqL

(
B(xL) + M

2

)
(1−M − xLB(xL)) +K − TrB(xL) hold.

(2) Alternatively, the schools do not deviate from (H,H), that is Π(H,H) ≥ Π̂(H,H) or equiva-
lently, TM2 (1−M)qH ≥ TqL

(
B(M2 ) + M

2

) (
1−M −B(M2 )

)
+K − TrB(M2 ).

Same as before if we show that the high quality school doesn’t deviate from (H,L), i.e.,
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ΠH
Low −ΠH

(H,L) + Π̂H
(H,L) −ΠL

Low = TMqL
2 B(M2 ) + Π̂H

(H,L) −ΠL
Low ≤ 0, then we complete our proof.

TMqL
2

B(
M

2
) + Π̂H

(H,L) −ΠL
Low =

TMqLB(M
2

)

2
+
TrB(M

2
)

2
+
TqLB(M

2
)

2

[
M

2
+
B(M

2
)

2
− 1

]

=
TB(M

2
)

2

[
r + qL

(
11M

8
− 3

4

)]
< 0 since

M

2
<

1

3

(
1− r

qL

)
by Assumption 2.

Thus, either (H,L) or (H,H) is an equilibrium outcome.

Finally, the converse of the claim is not necessarily true because ΠH
Low−ΠH

(H,L)+Π̂H
(H,L)−ΠL

Low

is strictly negative. That is, there are many parameters in which at least one school invests in
quality in the high saturation treatment, but the treated school invests only in capacity in the
low saturation treatment.
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B Weighting of average treatment effects with unequal selection
probabilities

B.1 Saturation Weights

Our experimental design is a two-stage randomization. First, villages are assigned to one of three
groups: Pure Control; High-saturation, H; and Low-saturation, L; based on power calculations,
3
7 of the villages are assigned to the L arm, and 2

7 each to the H arm and the control group.
Second, in the L arm, one school in each village is further randomly selected to receive a grant
offer; meanwhile, all schools in H and no school in control villages receive grant offers. This
design is slightly different from randomization saturation designs that have been recently used
to measure spillover effects (see Crépon et al., 2013; Baird et al., 2016) since the proportion
of schools that receive grant offers is not randomly assigned within L villages. Instead, since
we are interested in examining what happens when a single school is made the grant offer, the
proportion of schools within L villages assigned to treatment depends on village size at the time
of treatment; this changes the probability of selection into treatment for all schools in these
villages. For instance, if a L village has 2 schools, then probability of treatment is 0.5 for a given
school, whereas if the village has 5 schools, the selection probability reduces to 0.20.

While this consideration does not affect the estimates for the H arm, the impact for schools
in the L arm need to adjust for this differential selection probability. This can be done fairly
simply by constructing appropriate weights for schools in the L villages. Not doing so would
overweight treated schools in small villages and untreated schools in large villages. Following
the terminology in Baird et al. (2016), we refer to the weights given below as saturation weights,
sg where g represents the treatment group:

• shigh = scontrol = 1

• slowtreated = B, where B is the number of private schools in the village

• slowuntreated = B
B−1

To see why weighting is necessary, consider this example. Assume we are interested in the
following unweighted simple difference regression: Yij = α+ βTij + εij , where i indexes a school
in village j; Tij is a treatment indicator that takes value 1 for a treated school in L villages
and 0 for all control schools. That is, we are only interested in the difference in outcomes
between low-treated and control schools. Without weighting, our treatment effect is the usual
β = [E(TT ′)]−1E(TY ).

If instead we were to account for the differential probability of selection of the low-treated
schools, we would weight these observations by B and control observations by 1. This weighting
transforms the simple difference regression as follows: Ỹij = α̃ + β0T̃ij + ε̃ij , and our β0 =
[E(T̃ T̃ ′)]−1E(T̃ Ỹ ), where T̃ and Ỹ are obtained by multiplying through by

√
Bj where Bj is

the weight assigned to the low-treated observation based on village size. Note that the bias from
not weighting is therefore more severe as village size increases. However, since our empirical
village size distribution is quite tight (varying only between 1 and 9 private schools), in practice,
weighting does not make much of a difference to our results.

While we must account for weights to address the endogenous sampling at the school level
in the low-saturation treatment, we do not need weights to account for the unequal probability
of village level assignment in the first stage since this assignment is independent of village
characteristics. Nevertheless, if we were to do so, our results are nearly identical. The weights
in this case would be as follows:

• shigh = scontrol = 7
2

• slowtreated = 7
3B

• slowuntreated = 7
3

B
B−1
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B.2 Tracking Weights

In addition to the saturation weights, tracking weights are required to account for the random-
ized intensive tracking procedure used in round 5. These weights are only used for regressions
containing data from round 5; regressions using data from rounds 1-4 only require saturation
weights. We implemented this randomized tracking procedure in order to address attrition con-
cerns, which we expected to be more severe two years after treatment. We describe below the
details of the procedure and specify the tracking weights for round 5 data.

In round 5, 60 schools do not complete surveys despite being operational. We randomly
select half of these schools to be intensively tracked, i.e. our enumerators make multiple visits to
these schools to track down the respondent, and, if necessary, survey the respondents over the
phone or at non-school premises. These efforts increase our round 5 survey completion rate from
88 to 94 percent. To account for the additional attention received by this tracked subsample, we
assign a weight of 2 if the school was selected to be part of the intensively tracked subsample,
and 0 if it was not.
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C Sampling, Surveys and Data

Sampling Frame

Villages: Our sampling frame includes any village with at least two non-public schools, i.e.
private or NGO, in rural areas of Faisalabad district in the Punjab province. The data come
from the National Education Census (NEC) 2005 and are verified and updated during field visits
in 2012. There are 334 eligible villages in Faisalabad, comprising 42 percent of all villages in
the district; 266 villages are chosen from this eligible set to be part of the study based on power
calculations.

Schools: Our intervention focuses on the impact of untied funding to non-public schools. The
underlying assumption here is that a school owner or manager has discretion over spending in
their own school. If instead the school is part of a network of schools and is centrally managed,
as is the case for certain NGO schools in the area, then it is often unclear how money is allocated
across schools in the network. Therefore, we decided to exclude schools in our sample where we
could not obtain guarantees from officials that the money would be spent only on the randomly
selected schools. In practice, this was a minor concern since it only excluded 5 schools (less than
1 percent of non-public schools) across all 266 villages from participation in the study. The final
set of eligible schools for participation in the study was 880.

Study Sample

All eligible schools that consented to participate across the 266 villages are included in the final
randomization sample for the study. This includes 822 private and 33 NGO schools, for a total
of 855 schools; there were 25 eligible schools (about 3 percent) that refused to participate in
either the ballot or the surveys. The reasons for refusals were: impending school closure, lack
of trust, survey burden, etc. Note that while the ballot randomization included all 855 schools,
the final analysis sample has 852 schools (unbeknownst to us 1 school had closed down by the
time of the ballot and the other 2 were actually refusals that were mis-recorded by field staff).
Appendix Figure C1 summarizes the number of villages and schools in each experimental group.

Power Calculations

We use longitudinal LEAPS data for power calculations and were able to compare power un-
der various randomization designs. Given high auto-correlation in school revenues, we chose a
stratified randomization design, which lowers the likelihood of imbalance across treatment arms
and increases precision since experimental groups are more comparable within strata than across
strata (Bruhn and McKenzie, 2009). The sample size was chosen so that the experiment had 90
percent power to detect a 20 percent increase in revenue for H schools, and 78 percent power
for the same percentage increase in revenue for Lt schools (both at 5% significance level).

Survey Instruments

We use data from a range of surveys over the project period. We outline the content and the
respondents of the different surveys below. For the exact timing of the surveys, please refer to
Appendix Figure C2.

Village Listing: This survey collects identifying data such as school names and contact num-
bers for all public and private schools in our sampling frame.
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School Survey Long: This survey is administered twice, once at baseline in summer 2012
and again after treatment in the first follow-up round in May 2013. It contains two modules:
the first module collects detailed information on school characteristics, operations and priorities;
and the second module collects household and financial information from school owners. The
preferred respondent for the first module is the operational head of the school, i.e. the individual
managing day-to-day operations; if this individual was absent the day of the survey, either the
school owner, the principal or the head teacher could complete the survey. For the second
module, the preferred respondent was either the legal owner or the financial decision-maker of
the school. In practice, the positions of operational head or school owner are often filled by the
same individual.

School Survey Short: This survey is administered quarterly between October 2013 and
December 2014, for a total of four rounds of data. Unlike the long school survey, this survey
focuses on our key outcome variables: enrollment, fees, revenues and costs. The preferred
respondent is the operational head of the school, followed by the school owner or the head
teacher. Please consult Appendix Figure C3 to see the availability of outcomes across rounds.

Child Tests and Questionnaire: We test and collect data from children in our sample
schools twice, once at baseline and once after treatment in follow-up round 3. Tests in Urdu,
English and Mathematics are administered in both rounds; these tests were previously used and
validated for the LEAPS project (Andrabi et al., 2002). Baseline child tests are only administered
to a randomly selected half of the sample (426 schools) in November 2012. Testing is completed
in 408 schools for over 5000 children, primarily in grade 4.6 If a school had zero enrollment in
grade 4 however, then the preference ordering of grades to test was grade 3, 5, and then 6.7 A
follow-up round of testing was conducted for the full sample in January 2014. We tested two
grades between 3 and 6 at each school to ensure that zero enrollment in any one grade still
provided us with some test scores from every school. From a roster of 20,201 enrolled children
in this round, we tested 18,376 children (the rest were absent). For children tested at baseline,
we test them again in whichever grade they are in as long as they were enrolled at the same
school. We also test any new children that join the baseline test cohort. In the follow-up round,
children also complete a short survey, which collects family and household information (assets,
parental education, etc.), information on study habits, and self-reports on school enrollment.

Teacher Rosters: This survey collects teacher roster information from all teachers at a school.
Data include variables such as teacher qualifications, salary, residence, tenure at school and in
the profession. It was administered thrice during the project period, bundled with other surveys.
The first collection was combined with baseline child testing in November 2012, and hence data
was collected from only half of the sample. Two follow-up rounds with the full sample took place
in May 2013 (round 1) and November 2014 (round 5).

Investment Plans: These data are collected once from the treatment schools as part of the
disbursement activities during September-December 2012. The plans required school owners
to write down their planned investments and the expected increase in revenues from these
investments— whether through increases in enrollment or fees. School owners also submitted a
desired disbursement schedule for the funds based on the timing of their investments.

6The remaining schools had either closed down (2), refused surveying (10) or had zero enrollment in the
tested grades at the time of surveying (6). The number of enrolled children is 5611, of which 5018 children are
tested; the remaining 11% are absent.

797 percent of schools (394/408) had positive enrollment in grade 4.
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Data Definitions

The table below lists, defines and provides the data source for key variables in our empirical
analysis. Group A are variables measured at the village level; Group B at the school level; and
Group C at the teacher level.

Variable Description Survey
Source

Group A: Village Level
Grant per capita Grant amount per private school going child in

treatment villages. For L villages, this is Rs
50,000/total private enrollment, and for H villages,
this equals (50,000*# of private schools in vil-
lage)/total private enrollment. Control schools are
assigned a value of 0.

School

Group B: School Level
Closure An indicator variable taking the value ‘1’ if a school

closed during the study period
School

Refusal An indicator variable taking the value ‘1’ if a school
refused a given survey

Enrollment School enrollment in all grades, verified through
school registers. Coded as 0 after school closure.

School

Fees Monthly tuition fees charged by the school averaged
across all grades.

School

Posted Revenues Sum of revenues across all grades obtained by mul-
tiplying enrollment in each grade by the monthly
fee charged for that grade. Coded as 0 after school
closure.

School

Collected Rev-
enues

Self-reported measure on total monthly fee collec-
tions from all enrolled students. Coded as 0 after
school closure unless otherwise specified.

School

Test Scores Child test scores in English, Math and Urdu, are av-
eraged across enrolled children to generate school-
level test scores in these subjects. Tests are graded
using item response theory (IRT), which appropri-
ately adjusts for the difficulty of each question and
allows for comparison across years in standard de-
viation units.

Child
tests

Stayer A stayer is a child who self-reports being at the
same school for at least 18 months in round 3.

Child
survey

Fixed Costs Sum of spending on infrastructure (construc-
tion/rental of a new building, additional classroom,
furniture and fixtures), educational materials, and
other miscellaneous items in a given year. Data is
collected at the item level, e.g. furniture, equip-
ment, textbooks etc. Coded as 0 after school clo-
sure.

School

Continued on next page
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Continued from previous page
Variable Description Survey

Source
Variable Costs Sum of spending on teacher salaries, non-teaching

staff salaries, rent and utilities for a given month.
Coded as 0 after school closure.

School

Sources of school
funding (Y/N)

Indicator variables for whether school items were
purchased through (i) self-financing- school fees or
owner’s own household income, or (ii) credit- loans
from a bank or MFI

School

Household bor-
rowing (Y/N)

Indicator variables for borrowing behavior of the
school owner’s household: whether household ever
borrowed from any sources, formal sources (e.g.
bank, MFI) and informal (e.g. family, friend, pawn-
shop, moneylender) sources.

School
owner

Household bor-
rowing: Loan
value

Value of total borrowing in PKR by the owner
household from any source for any purpose.

School
owner

Group C: Teacher Level
Teacher salaries Monthly salary collected for each teacher present

during survey.
Teacher
roster

Teacher start date YYYY-MM at which the teacher started her tenure
at the school. This allows us to tag a teacher as
a newly arrived or an existing teacher relative to
treatment date.

Teacher
roster

28
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D Balance and Attrition

In this section, we discuss and address issues of experimental balance and attrition in detail.

D.1 Balance

As noted in the main text of the paper, our randomization is always balanced in distributional
tests across the village and school level. While there is no mean imbalance at the village level
in univariate comparisons, we do detect mean imbalance in a few comparisons between the Lt

schools and schools in H and control. This imbalance is primarily driven by the skewness (heavy
right tail) of some of our covariates. To see this, recall that our randomization is stratified by
village size and average revenue and takes place in two stages, first at the village level and then
at the school level. While stratification helps in reducing the ex-ante probability of imbalance
at the village level, it does not automatically guarantee the same for school level regressions.
Instead, the source of imbalance for the Lt group is related to distributional skewness and the
sample sizes we realize as a result of our design. Because only 1 school in a low-saturation
village is offered a grant, there are 114 Lt schools in comparison with 228 H and 249 control
schools. The smaller sample size for the Lt group increases the likelihood that the distributional
overlap for a given covariate between the Lt group and the H or control group may have uneven
mass, especially in the tails of the distribution. It is therefore reassuring that though we may
have mean imbalance in comparisons with the Lt group, the Kolmogorov-Smirnov (K-S) tests
in Appendix Table D1 show that we cannot reject that the covariate distributions are the same
for comparisons between Lt and other groups. Nevertheless, we conduct two types of additional
analyses, presented below, to address any concerns arising from the detected imbalance.

First, we conduct simulations to see whether we still observe mean covariate imbalance when
we randomly select data from 1 school in the control or H arm to compare with our Lt sample.
The thought experiment here is as follows: Assume we only had money to survey 1 school in each
experimental group, but the treatment condition remained the same (i.e. all schools are treated
in H; 1 school in L; and no schools in control). Our school level balance regressions would now
only use data from the surveyed schools. Since these sample sizes are more comparable, the
likelihood of imbalance is now lower. Indeed, when we run 1000 simulations of this procedure,
we find no imbalance on average using this approach between either Lt and control, or Lt and
H schools. This approach can also be applied to estimate our treatment effects, and we find
that our key results are quite similar in magnitudes though we lose some precision due to the
smaller sample sizes. This exercise lends support to the idea that the mean imbalance at the
school level does not reflect a randomization failure but rather issues of covariate overlap in
group distributions.

Second, we assess the robustness of our results by trimming the right tails, top 2%, of the
imbalanced variables and re-running the balance and main outcome regressions. The previous
analysis provides justification for undertaking these approaches as a way to understand our
treatment effects. Appendix Table D2 shows our balance regressions with trimmed baseline
variables. There is no average imbalance for enrollment or fees in comparisons between Lt versus
control; we observe some imbalance at the 10% level for H vs Lt schools for fees. However,
observing 3 out of 32 imbalanced tests at the 10% level may occur by random chance. Our
outcome regressions using trimmed baseline data in Appendix Tables D3 are also nearly identical
to the tables in the main text. Together, these tests reveal that the limited imbalance we detect
does not pose any noteworthy concerns for our results.

D.2 Attrition

Even though we have high survey completion rates throughout the study, we do observe some
differential response rates between the Lt and control schools (see Appendix Table D4). It is not
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surprising that treated schools, especially in the L arm, may be more willing to participate in
surveys given the sizable nature of the cash grant they received. Here, we check robustness of our
results to this (small) differential attrition using predicted attrition weights. The procedure is as
follows: We calculate the probability of refusal (in any follow-up round) given treatment variables
and a set of covariates using a probit model, and use the predicted values to construct weights.8

The weight is the inverse probability of response (1− prob(attrition))−1, and is simply multiplied
to the existing saturation weight. This procedure gives greater weight to those observations that
are more likely to refuse in a subsequent round.

Appendix Table D5 shows our key regressions using attrition weights. Given the low levels
of attrition, our results, unsurprisingly, are similar in magnitudes and significance to tables in
the main text.

8The probit model reveals that only our treatment variable has any predictive power for attrition.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

H-C=0 L-C=0 H-L=0 H=C H=L
Number8of8public8schools 266 2.5 0.011 0.010 0.001 0.95 1.00

[0.95] [0.95] [0.99]

Number8of8private8schools 266 3.3 0.021 0.162 -0.141 1.00 0.99

[0.85] [0.16] [0.18]

Private8enrollment 266 523.5 -23.549 11.202 -34.750 0.28 0.30

[0.51] [0.71] [0.29]

Average8monthly8fee8(PKR) 266 232.1 12.668 -12.855 25.523 0.46 0.57

[0.41] [0.20] [0.07]

Average8test8score 133 -0.222 -0.013 0.031 -0.044 0.27 0.35

[0.88] [0.75] [0.57]

Overall8Effect:8p-value 0.95 0.96 0.99

H-C=0 8Lt8-C8=0 8Lu8-C8=0 H=C 8Lt=C H=Lt

Enrollment 851 163.6 -3.9 -18.9 0.9 15.0 0.18 0.69 0.90

[0.66] [0.07] [0.91] [0.17]

Monthly8fee88(PKR) 851 238.1 24.1 -32.3 -10.7 56.4 0.94 0.42 0.24

[0.15] [0.02] [0.35] [0.00]

Annual8expenses88(PKR) 837 78860.9 21,559.2 -16,659.5 -5,747.2 38,218.7 0.58 0.88 0.57

[0.13] [0.15] [0.60] [0.01]

Monthly8expenses8(PKR) 848 25387.0 2,692.7 -2,373.7 2,280.1 5,066.3 0.81 0.82 0.94

[0.32] [0.43] [0.28] [0.16]

Infrastucture8index8(PCA) 835 -0.008 0.073 0.308 -0.074 -0.235 0.22 0.40 0.27

[0.64] [0.17] [0.56] [0.33]

School8age8(in8years) 852 8.3 0.028 0.296 0.220 -0.268 0.98 0.73 0.61

[0.96] [0.69] [0.70] [0.72]

Number8of8teachers 851 8.2 0.015 -0.408 0.242 0.423 1.00 0.95 0.81

[0.97] [0.39] [0.48] [0.37]

Average8test8score 401 -0.210 -0.054 0.160 -0.052 -0.214 0.55 0.39 0.11

[0.53] [0.18] [0.61] [0.05]

Overall8Effect:8p-value 0.83 0.28 0.24

Notes:8*8p<0.1,8**8p<0.05,8***8p<0.01

a)8This8table8shows8randomization8checks8at8the8village8and88private8school8level,8Panel8A8and8B8respectively,8for8key8variables8in8our

study.8Across8both8panels,8column818shows8number8of8observations8and8col828shows8the8control8mean.8Panel8A,8cols83-58and8Panel8B,

3-68show8tests8of8differences--8regression8coefficients8and8p-values8in8square8brackets--88between8experimental8groups.8Panel8A,

cols86-8,8and8Panel8B,8cols87-98show8p-values8from8Kolmogorov-Smirnov8(K-S)8tests8of8equality8of8distributions.8In8the8bottom8row,

we8report8p-value8from8a8test8asking8whether8variables8jointly8predict8treatment8status8for8each8group.

b)88All8regressions8include8strata8fixed8effects.8Panel8A8regressions8have8robust8standard8errors.8Panel8B8regressions8are8weighted8to

adjust8for8sampling8and8have8clustered8errors8at8the8village8level.

c)8All8variables8are8defined8in8Appendix8C.8There8are8fewer8observations8for8test8scores8since8half8of8the8sample8was8tested8at8baseline.

8H-Lt8=0

0.33

0.51

Panel&B:&Private&school&level&variables

N
Control8
Mean

Tests8of8difference K-S8Test8p-values

1.00

1.00

0.86

0.85

Table8D1:8Randomization8Balance

Panel&A:&Village&level&variables

N
Control8
Mean

Tests8of8difference K-S8Test8p-values

L=C



(1) (2) (3) (4) (5) (6)

Private(school(level(variables H*C=0 .Lt.*C.=0 .Lu.*C.=0 .H*Lt.=0
Enrollment 836 154.1 *5.7 *13.8 *2.0 8.1

[0.39] [0.14] [0.77] [0.35]
Monthly.fee..(PKR) 834 221.6 2.5 *20.3 *8.4 22.8

[0.81] [0.13] [0.38] [0.07]
Annual.expenses..(PKR) 821 65441.7 5,875.8 *5,477.6 *4,902.8 11,353.3

[0.53] [0.60] [0.57] [0.32]
Monthly.expenses.(PKR) 832 22293.5 1,061.4 *2,774.9 2,720.2 3,836.4

[0.49] [0.14] [0.10] [0.05]
Infrastucture.index.(PCA) 819 *0.141 0.077 0.133 *0.012 *0.056

[0.41] [0.31] [0.88] [0.69]
School.age.(No.of.years) 836 7.9 *0.191 0.615 0.171 *0.806

. . [0.69] [0.40] [0.74] [0.25]
Number.of.teachers 834 7.7 *0.045 *0.290 0.316 0.245

[0.88] [0.44] [0.31] [0.47]
Average.test.score 393 *0.242 *0.020 0.074 *0.029 *0.095

[0.81] [0.48] [0.75] [0.34]

Overall.Effect:.p*value 0.85 0.47 0.94 0.38

Notes:.*.p<0.1,.**.p<0.05,.***.p<0.01
a).This.table.reproduces.Table.D1,.Panel.B,.using.trimmed.data.to.assess.whether.mean.imbalance.in.Table.D1,.Panel.B,.is.
driven.by.large.values.in.the.right.tails..The.trimming.procedure.makes.the.top.2%.of.baseline.values.missing.for.each.variable.
Column.1.shows.the.number.of.observations,.and.col.2.shows.the.control.mean..The.remaining.columns.show.tests.of.
difference.**.regression.coefficients.and.p*values.in.square.brackets**.between.groups..In.the.bottom.row,.we.report.p*values
from.a.test.asking.whether.variables.jointly.predict.treatment.status.for.each.group.
b)..Regressions.are.weighted.to.adjust.for.sampling.and.include.strata.fixed.effects,.with.clustered.standard.errors.at.the.village.level.

c).All.variables.are.defined.in.Appendix.C..There.are.fewer.observations.for.test.scores.since.half.of.the.sample.was.tested.at

baseline.

Table.D2:.Randomization.Balance,.Trimmed.Sample

N
Control.
Mean

Tests.of.difference



Table D3: Main Outcomes, Trimmed Sample

(1) (2) (3)
Enrollment Fees Score

High 10.50* 13.20* 0.154*
(5.73) (7.20) (0.08)

Low Treated 24.01*** -1.49 0.005
(7.39) (7.42) (0.10)

Low Untreated -2.16 -1.58 0.033
(5.44) (6.10) (0.07)

Baseline 0.78*** 0.75*** 0.473***
(0.04) (0.04) (0.09)

R-Squared 0.52 0.58 0.19
Observations 3985 2272 720
# Schools (Rounds) 821 (5) 786 (3) 720 (1)
Mean Depvar 154.13 221.58 -0.24
Test pval (H=0) 0.07 0.07 0.07
Test pval (Lt = 0) 0.00 0.84 0.96
Test pval (Lt = H) 0.07 0.06 0.13

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table reproduces our results using baseline variables
trimmed at the top 2% as controls; the trimming procedure drops
the top 2% of the baseline measure of the dependent variable
from the regression. Columns 1-3 show impacts on enrollment,
fees and test-scores.
b) Regressions are weighted to adjust for sampling and tracking
as necessary and include strata and round fixed effects, with
clustered standard errors at the village level. The number of
observations may vary across columns as data are pooled across
rounds and not all outcomes are measured in every round. We
thus also report the number of schools and round for each
regression; any variation in the number of schools arises from
attrition or missing values for some variables.
c) The bottom panel shows p-values from tests that either ask
whether we can reject a zero average impact for high (H=0) and
low treated (Lt=0) schools, or whether we can reject
equality of coefficients between high and low treated (Lt=H)
schools.
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(1) (2) (3) (4) (5)
Control High Low4Treated Low4Untreated N

Round41 0.059 @0.032 @0.044** @0.035* 824
(0.02) (0.02) (0.02)

Round42 0.052 @0.028 @0.045** @0.031 806
(0.02) (0.02) (0.02)

Round43 0.087 @0.063*** @0.079*** @0.038 798
(0.02) (0.02) (0.02)

Round44 0.054 @0.030 @0.054*** @0.029 781
(0.02) (0.02) (0.02)

Round45 0.126 @0.084*** @0.106*** @0.030 758
(0.02) (0.02) (0.03)

Always4refused 0.033 @0.007 @0.033** @0.025* 758
(0.02) (0.01) (0.01)

Enrollment 191.4 8.4 6.4 @33.0* 79
(44.68) (28.77) (18.74)

Monthly4fee4(PKR) 257.5 @28.5 @47.5 37.2 79
(60.78) (42.46) (50.90)

Annual4fixed4expenses4(PKR) 103745.0 55017.7 20106.0 @49684.0 77
(90071.94) (26347.19) (39480.86)

Monthly4variable4costs4(PKR) 31768.8 7830.1 44448.2 @4501.2 79
(19060.95) (31225.62) (9184.26)

Infrastructure4index 0.062 0.536 1.140 @0.192 78
(0.39) (0.74) (0.36)

School4age4(No4of4years) 8.8 6.3* @3.47 0.59 79
(3.64) (2.79) (2.62)

Number4of4teachers 9.7 1.01 @0.61 @0.81 79
(2.59) (0.94) (0.79)

Notes:4*4p<0.1,4**4p<0.05,4***4p<0.01
a)4This4table4examines4differential4attrition,4defined4as4refusal4to4participate4in4follow@up4surveying,4across4experimental4groups,4and4
assesses4whether4attriters4have4systematically4different4baseline4characteristics4across4groups.4Panel4A4tests4for4differential4attrition
in4each4follow@up4round4(1@5)4and4across4all4rounds.4Only4144schools4refuse4surveying4in4every4follow@up4round.4Panel4B4restricts4to
attriters4to4look4for4any4differences4in4baseline4characteristics4by4treatment.4Since4doing4this4exercise4on4144schools4would4not4be
informative,4we4conservatively4define4an4attriter4to4be4any4school4that4refuses4surveying4at4least4once4after4treatment4(794schools).
b)4All4regressions4include4strata4fixed4effects4and4are4weighted4to4adjust4for4sampling,4with4clustered4standard4errors4at4the4village
level.4The4number4of4observations4in4Panel4A4is4declining4over4time4because4closed4schools4are4coded4as4missing4in4these4regressions.

Table4D4:4Differential4Attrition

Panel&A:&Differential&Survey&Attrition&

Panel&B:&Differential&Baseline&Characteristics&for&Attriters&(At&least&once&refused)&by&Treatment&Status&



Table D5: Main Outcomes, using Attrition-predicted Weights

(1) (2) (3)
Enrollment Fees Score

High 8.71 25.69*** 0.17*
(5.55) (7.88) (0.09)

Low Treated 16.73** 5.47 -0.04
(7.19) (7.86) (0.11)

Low Untreated 0.91 6.30 0.06
(5.27) (6.40) (0.07)

Baseline 0.77*** 0.82*** 0.37***
(0.04) (0.04) (0.11)

R-Squared 0.62 0.71 0.16
Observations 3878 2230 706
# Schools (Rounds) 797 (5) 769 (3) 706 (1)
Mean Depvar 163.64 238.13 -0.21
Test pval (H=0) 0.12 0.00 0.05
Test pval (Lt = 0) 0.02 0.49 0.72
Test pval (Lt = H) 0.24 0.01 0.05

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table checks whether our results are robust to accounting
for differential attrition using the inverse probability weighting
technique. In addition to using saturation or tracking weights, we
now weight all regressions with attrition-predicted weights. This
procedure is described in detail in Appendix D. Cols 1-3 show
impacts on enrollment, fees, and test scores with these weights.
b) Regressions are weighted to adjust for sampling, tracking
where necessary, and attrition, and include strata and round fixed
effects, with standard errors clustered at the village level.
The number of observations may vary across columns as data are
pooled across rounds and not all outcomes are measured in every
round. We thus also report the number of schools and rounds for
each regression; any variation in the number of schools arises
from attrition or missing values for some variables.
c) The bottom panel shows p-values from tests that either ask
whether we can reject a zero average impact for high (H=0) and low
treated (Lt=0) schools, or whether we can reject equality of
coefficients between high and low treated (Lt=H) schools.
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E Additional Results

This section includes additional tables referenced in the main text.
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Table E1: Credit Behavior (Year 1)

School funding sources (Y/N) HH borrowing (Y/N) HH loan value

(1) (2) (3) (4) (5) (6)
Self-financed Credit Any Formal Informal Any

High -0.007 0.002 -0.010 0.020 -0.033 1,063.0
(0.01) (0.01) (0.05) (0.02) (0.05) (15,092.8)

Low Treated -0.0004 -0.006 -0.039 0.010 -0.053 17,384.2
(0.01) (0.01) (0.05) (0.02) (0.05) (29,982.8)

Low Untreated -0.002 -0.011 -0.005 0.035* -0.055 13,611.9
(0.01) (0.01) (0.04) (0.02) (0.04) (21,581.8)

Baseline 0.078 -0.017 0.080** 0.208*** 0.003 0.064*
(0.09) (0.01) (0.04) (0.05) (0.04) (0.03)

R-Squared 0.03 0.02 0.04 0.14 0.02 0.03
Observations 795 795 784 784 784 784
# Schools (Rounds) 795 (1) 795 (1) 784 (1) 784 (1) 784 (1) 784 (1)
Mean Depvar 0.99 0.02 0.23 0.02 0.21 44,782.7
Test pval (H=0) 0.48 0.88 0.83 0.23 0.47 0.94
Test pval (Lt= 0) 0.97 0.68 0.45 0.64 0.27 0.56
Test pval (Lt=H) 0.53 0.56 0.60 0.65 0.69 0.60

Notes: * p<0.10, ** p<0.05, *** p<0.001
a) This table looks at credit behavior of school owners in year 1 to understand whether the treatment
simply acted as a substitute for other types of credit. Data for columns 1-2 are from the school survey
and from the school owner survey for cols 3-6. The dependent variables in col 1-2 are indicators for
whether a school reports financing school expenditures through fees or owner income or through a formal
or informal financial institution, respectively. Col 3 reports whether the household of the school owner
has ever borrowed any money for any reason. Cols 4-5 disaggregate this household borrowing into formal
and informal sources. Col 6 examines total borrowing by the owner’s household for any reason. If the
owner household did not borrow, the loan value is coded as 0. Schools that closed or refused surveying
are coded as missing for credit behavior.
b) Regressions are weighted to adjust for sampling and include strata and round fixed effects, with
standard errors clustered at the village level. The number of observations and unique schools are the
same since we use one round of data. Observations may vary across columns due to attrition and missing
values. The mean of the dependent variable is the follow-up control mean.
c) The bottom panel shows p-values from tests that either ask whether we can reject a zero average impact
for high (H=0) and low treated (Lt=0) schools, or whether we can reject equality of coefficients
between high and low treated (Lt=H) schools.
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Table E2: Enrollment by Grades

(1) (2) (3) (4) (5)
Lower than 1 1 to 3 4 to 5 6 to 8 9 to 12

High 3.11 2.49 1.57 1.82 1.36
(2.15) (2.05) (1.11) (1.55) (1.15)

Low Treated 6.51** 8.81*** 2.85** 4.33** 3.73
(2.52) (2.57) (1.27) (2.04) (2.45)

Low Untreated 1.31 1.78 1.32 0.63 -1.29
(1.95) (1.83) (1.06) (1.48) (1.29)

Baseline 0.59*** 0.73*** 0.70*** 0.62*** 0.78***
(0.06) (0.05) (0.03) (0.04) (0.10)

R-Squared 0.38 0.54 0.59 0.57 0.65
Observations 3,334 3,420 3,420 3,420 3,420
# Schools (Rounds) 852 (4) 855 (4) 855 (4) 855 (4) 855 (4)
Mean Depvar 49.89 53.68 28.15 23.10 8.22
Test pval (H=0) 0.15 0.22 0.16 0.24 0.24
Test pval (Lt= 0) 0.01 0.00 0.03 0.03 0.13
Test pval (Lt=H) 0.17 0.01 0.28 0.20 0.39

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table disaggregates school enrollment into grade bins to examine the
source of enrollment gains over the two years of the study. Data from rounds
1-4 are used since grade-wise enrollment was not collected in round 5. All
grades in closed schools are assigned 0 enrollment.
b) Regressions are weighted to adjust for sampling and include strata and round
fixed effects, with standard errors clustered at village level. We report the
number of observations and the unique number of schools and rounds in each
regression; the number of unique schools may be fewer than the full sample due
to attrition or missing values for some variables. The mean of the dependent
variable is its baseline value.
c) The bottom panel shows p-values from tests that either ask whether we can
reject a zero average impact for high (H=0) and low treated (Lt=0) schools, or
whether we can reject equality of coefficients between high and low treated (Lt=H)
schools.
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Table E3: Enrollment Decomposition Using Year 1 Child Data

(1) (2)
Enrollment % New

High 0.348 0.025*
(0.702) (0.015)

Low Treated 0.776 0.056**
(0.740) (0.024)

Low Untreated -0.382 0.024
(0.706) (0.017)

Baseline 0.641***
(0.048)

R-Squared 0.61 0.04
Observations 765 711
# Schools (Rounds) 765 (1) 711 (1)
Mean Depvar 14.69 0.07
Test pval (H=0) 0.62 0.10
Test pval (Lt= 0) 0.30 0.02
Test pval (Lt=H) 0.56 0.21

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table examines changes in child enrollment status.
The dependent variables are from tested children in round 3.
Col 1 is the number of children enrolled in grade 4, and
col 2 is the fraction of those children who newly enroll in
the school after treatment. Enrollment status is determined
based on child self-reports; any child who reports joining
the school fewer than 18 months before are considered new.
b) Regressions are weighted to adjust for sampling and
include strata and round fixed effects, with standard errors
clustered at village level. The number of observations and
schools is the same in this table since we survey children
just once. Observations may be lower than the full sample
due to missing values for some variables. The mean of the
dependent variable is its baseline value or the follow-up
control mean.
c) The bottom panel shows p-values from tests that either
ask whether we can reject a zero average impact for high
(H=0) and low treated (Lt=0) schools, or whether we can
reject equality of coefficients between high and low treated
(Lt=H) schools.

40



Table E4: Monthly Tuition Fees by Grades

(1) (2) (3) (4) (5)
Lower than 1 1 to 3 4 to 5 6 to 8 9 to 12

High 14.43 21.22* 19.38 36.87** 142.64**
(10.49) (12.12) (12.54) (17.75) (66.98)

Low Treated -4.85 -3.22 -8.05 -18.75 88.64
(5.39) (6.39) (8.04) (12.58) (78.69)

Low Untreated 2.33 4.23 -1.06 -2.44 -68.85
(4.59) (6.21) (6.54) (11.24) (54.93)

Baseline 0.83*** 0.75*** 0.79*** 0.67*** 0.47***
(0.05) (0.05) (0.04) (0.06) (0.13)

R-Squared 0.64 0.60 0.59 0.57 0.48
Observations 2,277 2,278 2,240 1,485 360
# Schools (Rounds) 789 (3) 789 (3) 773 (3) 542 (3) 144 (3)
Mean Depvar 169.89 207.82 237.43 319.88 425.94
Test pval (H=0) 0.17 0.08 0.12 0.04 0.04
Test pval (Lt= 0) 0.37 0.61 0.32 0.14 0.26
Test pval (Lt=H) 0.08 0.05 0.04 0.00 0.53

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table averages monthly tuition fees by grade bins to assess whether
fee changes occur in specific grades. Fees for closed schools or schools
that do not offer certain grade levels are coded as missing.
b) Regressions are weighted to adjust for sampling and include strata and
round fixed effects, with standard errors clustered at village level. We
report the number of observations and the unique number of schools and
rounds in each regression. Higher grades have fewer school observations
because fewer schools offer those grade levels and hence post tuition
fees. These observations are subsequently coded as missing. In contrast,
in Table E2, enrollment in higher grades is coded as 0 if a school does
not offer those grades. The pattern of results in Table E2 stay the same
if we restrict its sample to the sample in this table. The mean of the
dependent variable in all regressions is its baseline value.
c) The bottom panel shows p-values from tests that either ask whether we
can reject a zero average impact for high (H=0) and low treated (Lt=0)
schools, or whether we can reject equality of coefficients between high and
low treated (Lt=H) schools.
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Table E5: School Test Scores, Different Controls

No controls Additional controls

(1) (2) (3) (4) (5) (6) (7) (8)
Math Eng Urdu Avg Math Eng Urdu Avg

High 0.155 0.181* 0.115 0.150 0.157* 0.185* 0.108 0.151*
(0.105) (0.102) (0.092) (0.096) (0.093) (0.094) (0.088) (0.088)

Low Treated -0.066 0.108 -0.059 -0.006 -0.0832 0.069 -0.087 -0.038
(0.122) (0.114) (0.114) (0.111) (0.106) (0.104) (0.102) (0.0981)

Low Untreated 0.021 0.055 0.007 0.028 0.005 0.046 -0.024 0.007
(0.091) (0.091) (0.081) (0.083) (0.078) (0.082) (0.077) (0.074)

Baseline 0.373*** 0.457*** 0.312*** 0.433***
(0.077) (0.064) (0.01) (0.086)

R-Squared 0.08 0.06 0.08 0.08 0.27 0.20 0.21 0.24
Observations 732 732 732 732 722 722 722 722
# Schools (Rounds) 732 (1) 732 (1) 732 (1) 732 (1) 722 (1) 722 (1) 722 (1) 722 (1)
Mean Depvar -0.21 -0.18 -0.24 -0.21 -0.21 -0.18 -0.24 -0.21
Test pval (H=0) 0.14 0.08 0.21 0.12 0.09 0.05 0.22 0.08
Test pval (Lt= 0) 0.59 0.34 0.60 0.96 0.43 0.51 0.40 0.70
Test pval (Lt=H) 0.07 0.52 0.13 0.16 0.02 0.27 0.05 0.05

Notes: * p<0.10, ** p<0.05, *** p<0.001
a) This table conducts robustness checks on our school test score results. School test scores are
generated by averaging child average (across all subjects) test scores for a given school. Columns
1-4 are the same regressions as Table 4, Columns 1-4, but without any baseline controls. Columns
5-8 repeat these regressions with additional controls, which include the baseline score, percentage
of students in specific grades and percentage female. Test scores are averaged across all children
in a given school separately for each round, and child composition is hence different across rounds.
b) Regressions are weighted to adjust for sampling and include strata fixed effects, with standard
errors clustered at village level. We include a dummy variable for the untested sample at baseline
across all columns and replace the baseline score with a constant. Since the testing sample was
chosen randomly at baseline, this procedure allows us to control for baseline test scores wherever
available. The number of observations and the unique number of schools are the same since test
scores are only collected once after treatment. The number of schools is lower than the full sample
due to attrition and zero enrollment in some schools in the tested grades. The mean of the dependent
variable is the test score for those schools tested at random at baseline.
c) The bottom panel shows p-values from tests that either ask whether we can reject a zero average
impact for high (H=0) and low treated (Lt=0) schools, or whether we can reject equality of
coefficients between high and low treated (Lt=H) schools.
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Table E6: Test Scores, Stayers Only

School level Child level

(1) (2) (3) (4) (5)
Math Eng Urdu Avg Avg

High 0.150 0.191* 0.120 0.132* 0.235**
(0.093) (0.098) (0.085) (0.077) (0.094)

Low Treated -0.114 0.054 -0.090 -0.034 0.095
(0.115) (0.111) (0.111) (0.089) (0.108)

Low Untreated 0.031 0.055 0.015 0.016 0.002
(0.077) (0.084) (0.071) (0.063) (0.083)

Baseline Score 0.279** 0.429*** 0.365*** 0.337*** 0.637***
(0.135) (0.118) (0.109) (0.098) (0.049)

R-Squared 0.17 0.13 0.15 0.17 0.21
Observations 720 720 720 720 11,676
# Schools (Rounds) 720 (1) 720 (1) 720 (1) 720 (1) 711 (1)
Mean Depvar -0.21 -0.21 -0.21 -0.21 -0.18
Test pval (H=0) 0.11 0.05 0.16 0.09 0.01
Test pval (Lt= 0) 0.32 0.62 0.42 0.71 0.38
Test pval (Lt=H) 0.02 0.21 0.06 0.06 0.19

Notes: * p<0.10, ** p<0.05, *** p<0.001
a) This table examines whether our school test score results are driven by compositional
changes. As before, school test scores are generated by averaging child average (across
all subjects) test scores for a given school. We repeat all of the regressions in Table
4, but only include all children who report being at the same school for at least 1.5
years.
b) Regressions are weighted to adjust for sampling and include strata fixed effects,
with standard errors clustered at village level. We include a dummy variable for the
untested sample at baseline across all columns and replace the baseline score with a
constant. Since the testing sample was chosen randomly at baseline, this procedure allows
us to control for baseline test scores wherever available. The number of observations and
the unique number of schools are the same since test scores are only collected once after
treatment. The number of schools is lower than the full sample due to attrition and zero
enrollment in some schools in the tested grades. The mean of the dependent variable is
the test score for those tested at random at baseline.
c) The bottom panel shows p-values from tests that either ask whether we can reject a
zero average impact for high (H=0) and low treated (Lt=0) schools, or whether we can
reject equality of coefficients between high and low treated (Lt=H) schools.
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Table E7: Main Outcomes, Interacted with Baseline Availability of Bank Account

(1) (2) (3)
Enrollment Fees Score

High 6.93 18.28* 0.118
(7.36) (10.09) (0.10)

Low Treated 21.85** -1.76 0.021
(10.35) (10.14) (0.13)

Low Untreated -0.49 0.75 0.005
(6.86) (8.14) (0.08)

High*NoBankAct 7.55 2.09 0.110
(10.72) (15.12) (0.16)

Low Treated*NoBankAct 0.05 6.98 -0.133
(14.41) (14.93) (0.22)

Low Untreated*NoBankAct 2.93 -2.91 0.091
(11.63) (13.60) (0.15)

HH does not have bank act -1.13 -0.77 -0.102
(7.42) (10.01) (0.11)

Baseline 0.75*** 0.83*** 0.35***
(0.05) (0.04) (0.11)

R-Squared 0.62 0.72 0.17
Observations 4,059 2,312 725
# Schools (Rounds) 836 (5) 800 (3) 725 (1)
Mean Depvar 163.64 238.13 -0.21

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table examines whether our results are driven by
baseline access to bank accounts in school owner households.
Cols 1-3 reproduce our key results adding an interaction
with a dummy variable for whether the owner’s household
does not have a bank account with treatment indicators.
The primary coefficients of interest are the three
interaction terms with the treatment groups, which tell us
whether treated schools where the owner did not have access
to a bank account at baseline benefited more from treatment.
b) Regressions are weighted to adjust for sampling and
tracking and include strata and round fixed effects, with
standard standard errors clustered at village level. The
number of observations may vary across columns as data are
pooled across rounds and not all outcomes are measured in
every round. We thus also report the number of schools and
rounds for each regression, and any remaining variation in
the number of schools arises from attrition or missing
values for variables. The mean of the dependent variable is
its baseline value or the follow-up control mean.
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Table E8: Main Outcomes, controlling for Grant size per capita

(1) (2) (3)
Enrollment Fees Score

High -2.714 10.764 0.227
(10.605) (12.677) (0.165)

Low Treated 18.050** -2.128 -0.004
(8.345) (8.197) (0.110)

Low Untreated -3.310 -2.431 0.055
(6.245) (7.383) (0.083)

Grant per capita 0.031 0.022 -0.0002
(0.020) (0.024) (0.0004)

Baseline 0.760*** 0.826*** 0.359***
(0.047) (0.037) (0.114)

R-Squared 0.62 0.72 0.17
Observations 4,059 2,312 725
# Schools (Rounds) 836 (5) 800 (3) 725 (1)
Mean Depvar 163.64 238.13 -0.21
Test pval (H=0) 0.80 0.40 0.17
Test pval (Lt= 0) 0.03 0.80 0.97
Test pval (Lt=H) 0.03 0.21 0.10

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table repeats our main results with an additional
village level control variable, grant amount per capita.
This control variable captures whether our results are
driven by total resources provided to a village. It is
constructed by adding the total amount of funding
received by treatment villages, which is 50,000 PKR for
low-saturation villages and a multiple of 50,000 PKR
based on the number of private schools in high-saturation
villages.
b) Regressions are weighted to adjust for sampling and
tracking where necessary and include strata fixed effects,
with standard errors clustered at village level. The number
of observations may vary across columns as data are pooled
across rounds and not all outcomes are measured in every
round. We thus also report the number of schools and round
for each regression. Any remaining variation in the number
of schools arises from attrition or missing values for some
variables. The mean of the dependent variable is its
baseline value.
c) The bottom panel shows p-values from tests that either
ask whether we can reject a zero average impact for high
(H=0) and low treated (Lt=0) schools, or whether we
can reject equality of coefficients between high and low
treated (Lt=H) schools.
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Table E9: School Infrastructure (Year 2)

Spending Number purchased Facility present (Y/N) Other

(1) (2) (3) (4) (5) (6) (7)
Amount (PKR) Desks Chairs Computers Library Sports # Rooms Upgraded

High 606.00 0.56 1.16 0.06 -0.00 0.05* 0.24
(6537.56) (1.39) (0.83) (0.05) (0.03) (0.03) (0.37)

Low Treated 353.44 -0.92 0.84 0.14** 0.00 0.02 0.31
(7911.96) (1.44) (0.54) (0.06) (0.03) (0.03) (0.36)

Low Untreated 1497.67 -1.46 0.28 -0.02 0.02 0.02 0.08
(7029.37) (1.28) (0.38) (0.04) (0.03) (0.03) (0.33)

Baseline 0.04 0.08** 0.01 0.31*** 0.02 0.07* 0.74***
(0.03) (0.04) (0.02) (0.05) (0.03) (0.04) (0.05)

R-Squared 0.05 0.08 0.04 0.16 0.04 0.11 0.51
Observations 770 746 780 784 784 784 784
# Schools (Rounds) 770 (1) 746 (1) 780 (1) 784 (1) 784 (1) 784 (1) 784 (1)
Mean Depvar 57258.48 14.59 10.92 0.39 0.35 0.19 6.36
Test pval (H=0) 0.93 0.68 0.16 0.26 1.00 0.06 0.52
Test pval (Lt= 0) 0.96 0.53 0.12 0.03 0.95 0.46 0.39
Test pval (Lt=H) 0.97 0.32 0.74 0.21 0.95 0.44 0.86

Notes: * p<0.10, ** p<0.05, *** p<0.01
a) This table examines outcomes relating to school infrastructure using data from round 5 only. Column 1 is the
annual fixed expenditure on infrastructure– e.g. furniture, fixtures, or facilities. Columns 2-3 refer to the
number of desks and chairs purchased. Columns 4-6 are dummy variables for the presence of particular school
facilities. Finally, column 7 measures the number of rooms upgraded from temporary to permanent or semi-permanent
classrooms. Closed schools take on a value of 0 in all columns.
b) Regressions are weighted to adjust for sampling and include strata fixed effects, with standard errors
clustered at the village level. The number of observations and unique schools are the same since we only use one
round of data. The mean of the dependent variable is its baseline value.
c) The bottom panel shows p-values from tests that either ask whether we can reject a zero average impact for
high (H=0) and low treated (Lt=0) schools, or whether we can reject equality of coefficients between high
and low treated (Lt=H) schools.
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Table E10: Revenues, excluding Closed schools

Overall Posted (monthly) Overall Collected (monthly)

(1) (2) (3) (4) (5) (6)
Full Top Coded 1% Trim Top 1% Full Top Coded 1% Trim Top 1%

High 5,471.4 4,872.2* 4,543.6** 4,748.8 4,775.2** 3,593.5*
(3,432.9) (2,498.8) (2,094.2) (3,482.7) (2,425.1) (1,871.3)

Low Treated 8,589.9* 7,287.7* 6,271.1* 5,600.5 4,747.5 3,191.9
(4,988.8) (4,032.3) (3,742.7) (4,804.2) (3,349.9) (2,964.8)

Low Untreated -1,239.5 -1,434.3 -405.0 -119.6 -298.1 6.9
(2,843.0) (2,378.4) (1,847.0) (2,753.9) (2,364.5) (1,765.4)

Baseline Posted Revenues 1.0*** 1.0*** 0.9*** 0.8*** 0.9*** 0.7***
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

R-Squared 0.66 0.67 0.61 0.57 0.64 0.56
Observations 2,312 2,312 2,276 2,948 2,948 2,900
# Schools (Rounds) 800 (3) 800 (3) 788 (3) 781 (4) 781 (4) 770 (4)
Mean Depvar 40,181.0 38,654.1 36,199.2 30,865.0 30,208.8 27,653.0
Test pval (H=0) 0.11 0.05 0.03 0.17 0.05 0.06
Test pval (Lt= 0) 0.09 0.07 0.10 0.24 0.16 0.28
Test pval (Lt=H) 0.57 0.57 0.65 0.87 0.99 0.89

Notes: * p<0.1, ** p<0.05, *** p<0.01
a) This table repeats Table 2, Columns 2-7, to look at monthly posted and collected revenues dropping schools
once they close down. Columns 1-3 consider posted revenues, defined as the sum of revenues expected from each
grade based on enrollment and posted fees. Cols 4-6 consider collected revenues, defined as self-reported
revenues actually collected from all students at the school. Top coding of the data assigns the value at the
99th percentile to the top 1% of data. Trimming top 1% of data assigns a missing value to data above the 99th
pctl. Both top coding and trimming are applied to each round of data separately.
b) Regressions are weighted to adjust for sampling and tracking where necessary and include strata and round
fixed effects, with standard errors clustered at village level.The number of observations may vary across
columns as data are pooled across rounds and not all outcomes are measured in every round. We thus also report
the unique number of schools and rounds in each regression. Any remaining variation in the number of schools
arises from missing values for some variables. The mean of the dependent variable is its baseline value or the
follow-up control mean.
c) The bottom panel shows p-values from tests that either ask whether we can reject a zero average impact for
high (H=0) and low treated (Lt=0) schools, or whether we can reject equality of coefficients between high
and low treated (Lt=H) schools.
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F Private and Social Returns Calculations

In this section, we describe our calculations from Section 4 in the main text as well as show IRR
calculations. Note that this exercise is necessarily suggestive since a complete welfare calculus
is beyond the scope of this paper. We document changes for four beneficiary groups from our
intervention: school owners, teachers, parents and children.

Note that for these calculations, we take all point estimates seriously even if they are not
statistically significant or precise. We use these estimates to compare gains from a total grant
of PKR 150K under two different financial saturations— the L arm where we give PKR 50K to
one school in three villages, and the H arm where each school in one village receives PKR 50K.

We now proceed by looking at each beneficiary group separately.

F.1 Welfare Calculations

Summary of calculations: We reproduce the table from the main text below for reference.

In Rupees Standard Deviations

Group Owners Teachers Parents Children

Lt 10,918 -2,514 4,080 61.1

H 5,295 8,662 7,560 117.2

School Owners: We consider net collected revenues, subtracting variable costs from actual
collected revenues, as the monthly gains for school owners. Closed schools are considered missing
in these calculations (different from Table 2) because we are interested in the gains for school
owners rather than the average impact on schools. That is, we implicitly assume that owners
who close down their school make (on the margin) a similar amount to what they did before
closing the school. Imputing a zero revenue value would be a less plausible and more extreme
assumption.

Using Table Table E10, col 5, monthly collected revenues for Lt are Rs.4,748 and Rs.4,775
for H schools. Variable costs are computed using estimates from Table 5, col 6– the cumulative
effect is divided by 24 (12 months per year over 2 years of the intervention) for a monthly increase
of Rs.1,109 for Lt and Rs.3,010 for H schools. Thus, we have a monthly profit of Rs.3,639 for
Lt and Rs.1,765 for H schools. Multiplying by 3 gives us the owner estimates in table above.

Teachers: We use changes in the teacher wage bill to understand how the intervention affected
the teacher market. Recall from Table 7 that we do not observe significant overall changes in
number of teachers employed by schools, but do observe teacher churn in the H arm. Under
the assumption that this churn arises simply from switches in employment status for teachers,
we can use these estimates of wage gains to compute changes in teacher welfare. We see that
the average monthly wage bill in H increases by Rs.2,742 relative to control and decreases by
Rs.838 for the Lt schools (Table 7, Column 2). We simply multiply these coefficients by 3, and
find that teachers in H increase their overall income by Rs.8,226, while teachers in Lt over three
villages decrease their overall income by Rs.2,514.

Parents: Calculating consumer surplus requires some strong assumptions on the demand func-
tion. These assumptions include: (i) the demand curve can be approximated as linear; and (ii)
there is an upper bound to demand at zero price because of the reasonable assumption of ‘closed’
markets in our context.
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Since quality does not change in the L arm, our treatment effects arise from a movement
along the demand curve, as in Appendix Figure F1, Panel A. We derive this linear demand curve
using two points from our experiment— the baseline price-enrollment (PQ) combination of (238,
164), denoted by (P0, Q0) in the figure, and the Lt PQ-combination, denoted by (PL, QL). Since
collected fees drop by Rs 8 (Table 3, Col 9) and enrollment increases by 12 children (Table 3,
col 5), the Lt PQ-combination is PL=230Rs and QL=176. Hence, our linear demand curve is
Q = 521− 1.5P .

From Appendix Figure F1, Panel A, we can calculate the baseline consumer surplus, the
triangle CS0, and the additional surplus gain in Lt from movement down the demand curve,
represented by the dotted quadrilateral region. This additional surplus is calculated as the
difference in areas of the two triangles generated by the baseline and Lt PQ-combinations and
equals Rs.1,360. For a total 150K in grants across three villages, the increase in CS is therefore
Rs.4,080. The increase in consumer surplus in Lt is largely driven by the fee reduction faced
by the inframarginal children; the newly enrolled, ‘marginal,’ children were just at the cusp of
indifference before the intervention and so their gains are quite small.

For the H arm, we see test score gains accompanied by fee increases. This implies a
movement of the demand curve. Given our earlier assumption of an upper bound on demand
arising from closed markets, an increase in quality pivots our baseline demand curve outward,
as in Appendix Figure F1, Panel B. We use our H estimates to obtain this new demand curve.
Since collected fees increase by Rs 29 and enrollment by 9 children, our pivoted linear demand
curve is Q = 521 − 1.3P . The consumer surplus from this new demand curve is Rs.11,485;
relative to the baseline consumer surplus, this represents an increased surplus of Rs.2,520 per
school. The total consumer surplus increase from grant investment of RS.150K is thus Rs 7,560.

Children: We measure benefit to children in terms of test score gains. Conceptually, there
are two types of children we need to consider: (i) children that remain at their baseline schools,
and (ii) children that newly enroll at the school.

As seen in Appendix Table E6, the H arm dramatically improves test scores for already
enrolled children. In particular, considering a total baseline enrollment of 492 children from 3
schools, our H child test score gains of 0.22 sd (Table 4, Col 5) suggest a total increase of 108.2
sd. In comparison, the total gain in Lt is substantially lower at 49.2sd, even if we take the
(statistically insignificant) 0.1sd coefficient at face value.

For newly enrolled children, we rely on our previous work, Andrabi et al. (2017), showing
test score gains of 0.33sd for children who switch from public to private schools.9 In H villages,
this leads to a total test score gain of 8.9 standard deviations as each of the three schools gains 9
children (0.33sd*9*3). For the Lt sample, each school gains 12 children (Table 3, Col 5), which
means a total increase of 36 children across 3 villages, and a total test score increase of 11.9sd
(0.33*36).

Summing the gains for already and newly enrolled children, we obtain a total sd gain of
117.2 for H and 61.1 for L approaches.

These calculations assume that test score gains accrue to children across all grades, which
may be reasonable given that fee increases are observed across grades (Appendix Table E4).
Using the same method, if we instead restrict to the tested children in grades 3-5, we obtain a
total increase of 31sd in H compared with a 18.2sd increase in Lt.

9Our current study was not designed to estimate the effects for newly enrolled children since it would have
been enormously expensive to test all enrolled children in each public and private school in the village, and
identifying marginal movers for testing at baseline is a difficult, if not impossible, task.

49



Appendix(Figure(F1:(Consumer(Surplus(

Panel&A:!Consumer!surplus!at!baseline,!CS0,!and!in!L
t!from!movement

along!demand!curve

Panel&B:!Consumer!surplus!in!H!after!a!pivot!of!the!demand!curve!

Q 

P 

  
  

Q0 

 P0 

QL 

PL 

  

CS0 

  

  
CSL 

Q 

P 

  

  

Q0 

P0 

QH 

PH 
  

  

CSH 

CS0 



F.2 IRR and Loan-loss guarantee

The welfare calculations show the tension between private and social returns posed by the two
financing treatments. We will now compute the internal rate of return (IRR) directly, and see
whether lenders would be willing to lend to schools in this sector.

We conduct two types of IRR calculations and then assess whether schools would be able
to pay back a Rs.50,000 loan at 15% interest rate based on the IRR. We begin by calculating:
(i) Returns over a 2 year period with resale of assets at 50% value at the end of the term; and
(ii) Returns over a 5 year period with no resale of assets. We still use the same estimates of
collected revenues and costs as for the welfare calculations, but now also consider fixed costs for
assets purchased in year 1 (Table 5, Col 1). With these assumptions, we find returns between
61-83% for Lt and between 12-32% for H schools.

These rates of return are above or just around market interest rates in Pakistan, which
range from 15-20%, suggesting that this may be a profitable lending sector. If we were to offer
our grant as a RS 50,000 loan at 15% interest rate, it would take a Lt school 1.5 years to pay
off the loan and a H school 4 years to pay off their loan.

The higher rates of return coupled with the lower chance of default (Table 3, Col 4) may
lead the lender to prefer L over the H approach, unless the fixed costs of visiting three villages
(versus one) is much higher. A social planner who cares about child test scores may however
prefer the H approach. To incentivize the H approach, the social planner could subsidize the
lender based on the expected losses from defaults in a manner that makes the lender indifferent
between the L and H approaches.

We calculate this subsidy amount as follows. We first note that closure rates are differential
across the Lt and H groups by 7pp (Table 3, col 4). The closure rate in Lt group is 1% and 8%
for the H group. If we assume that closed schools would default on their loans completely, then
we can estimate the expected loss that would make a lender indifferent. The expected loss for a
given school in Lt group is Rs.613, while it is Rs.6400 for a H school. For every Rs.150K given
out in loans, the social planner would need to subsidize the lender by Rs.17,363 over a two year
period of the loan to make them indifferent between the two approaches. This subsidy compares
favorably to the annual consumer surplus gain estimated to be Rs.41,760 higher ([Rs.7,560-
Rs.4,080]*12) in the H arm as compared to the L arm.
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