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July 2019

Abstract

Mediation is a dispute resolution method that has gained increasing popularity

over the last few decades and given rise to a multi-billion-dollar industry. This pa-

per develops an “ordinal” market/mechanism design approach, where the mediator

seeks a resolution over two issues in which negotiators have diametrically opposed

ordinal preferences. Each negotiator has private information about her own rank-

ing of the outside option, i.e., the point beyond which the negotiator would rather

take the case to a conventional court proceeding. A necessary and sufficient condi-

tion for the existence of strategy-proof and efficient mechanisms is the availability

of “logrolling bundles” that form a special (semi)lattice structure and allow ne-

gotiators to make compromises on different issues. We characterize the full class

of strategy-proof, efficient, and individually rational mediation rules. A central

member of this class, the constrained shortlisting rule, stands out as the unique

strategy-proof, efficient, and individually rational mechanism that minimizes rank

variance.
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“ Mediation has rapidly become, with precious little fanfare, the ocean we swim in and

the air we breathe. It would now be hard to imagine a world where it wasn’t.” Jim Melamed1

1. Introduction

The bestseller Getting to Yes by Roger Fisher and William Ury, is arguably one of the

most famous—if not the most famous—works on the topic of negotiation. The authors

identify conflict as a growth industry, and the last few decades have proved them right.

Courts in all US states currently offer some form of ADR (alternative dispute resolution)

for the cases filed in state courts. Seventeen states require mandatory mediation: 6%

of civil cases in Northern California courts in 2011, and 35.6% of civil and 21.6% of

divorce cases in New York state courts in 2016 were mediated.2 The total value of

mediated cases in the UK is estimated to be £10.5bn. in 2011, excluding mega-cases and

family and community disputes.3 Empirical studies of mediation and program evaluations

suggest a 60-90% success rate, a 90-95% satisfaction rate by the disputants, and a higher

rate of compliance with mediator recommendations relative to court-imposed orders.

Employment, patent/copyright, construction, and family conflicts are some of the most

common types of mediated disputes. In addition to face-to-face mediation practices,

online dispute resolution has also gained increasing popularity over the last decade. The

dispute resolution centers of ebay, PayPal, Uber, and Amazon tackle more than a billion

disputes a year. Many online dispute resolution websites use automated protocols to help

parties resolve their conflicts.

Unlike litigation and arbitration, mediation does not aim at finding the truth, but

rather seeks mutual satisfaction through a nonbinding recommendation from which the

disputants are free to walk away. In mediation, a neutral third party orchestrates a

collaborative solution by facilitating communication/negotiation and promoting the ex-

ploration of mutually acceptable outcomes. The emphasis is not on who is right or wrong,

but rather on establishing a workable solution that meets the participants’ needs. Many

proponents advocate mediation as a means to broaden the range of issues being nego-

tiated from legal matters and remedies to other concerns and resolutions that might be

important to the parties.4 Disputants also prefer mediation over its alternatives because

1Founder and CEO of Mediate.com and recipient of American Bar Association Institutional Problem

Solver Award.
2Sources: National Center for State Courts (https://www.ncsc.org) and dispute resolution center of

State of New York (https://www.nysdra.org).
3The Seventh Mediation Audit, Centre for effective dispute resolution.
4For example, Rule 6 of the ADR Local Rules of the United States District Court for the Northern

District of California asserts that “[a] hallmark of mediation is its capacity to expand traditional settle-

ment discussion and broaden resolution options, often by exploring litigant needs and interests that may

be formally independent of the legal issues of the controversy.”
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it is more cost effective.5 Airline companies and hospitals, for example, prefer mediation

because mediation sessions are private and confidential. It is impossible to discuss a

legally “irrelevant” issue in litigation/arbitration, and some disputes are not just about

money or being right.6 In mediation, however, parties can discuss and negotiate issues

that are not directly linked to the case. The infinite flexibility of being able to bring any

issue to the table can be used to transform a competitive, “zero-sum” negotiation problem

into a “multi-issue” negotiation problem that enlarges the set of acceptable outcomes.

Notwithstanding the practical conveniences it affords, the mediation process is often

considered to be less formal and less transparent than binding adjudication processes.

The traditional view among legal theorists and researchers is that the competitive pre-

sentation of evidence in the formal adversarial system “counteracts decision maker bias

and produces fairer and more accurate decisions than less formal systems.”7 Many sup-

porters of this view argue that the low visibility and lack of formal rules and structure in

mediation, facilitated settlement, and other relatively informal processes reduce the rights

of less powerful participants.8 This view is not entirely without support from the field.

In a seminal work, LaFree and Rack (1996) provide empirical evidence from the small

claims court mediation program in Bernalillo County in Albuquerque, New Mexico, and

conclude that ethnicity and gender could be more important determinants in mediation

than adjudication. In particular, they report that white males receive significantly more

favorable outcomes in mediation than minority females.9

In this paper, which takes a market design approach, we argue that it may be pos-

sible to make meditation a more structured and rigorous process without compromising

the mediator’s primary role of facilitating communication and exploring common ground

between the disputants. To this end, we search for neutral, efficient, and incentive com-

patible recommendation mechanisms that mediators can use for systematic and consistent

decision making in practice. Market design has been fruitful in many applications, most

notably in auctions and matching. The goal of this paper is to offer the first market

design setting to analyze dispute resolution via mediation that is simple enough to be

practically relevant while maintaining the informational richness and complexities faced

5According to Hadfield (2000), it costs a minimum of $100,000 to litigate a straightforward business

claim in the US, whereas a mediation session varies from few hours to a day and even the most reputable

mediators charge around $10,000 - $15,000 for a day. In addition, disputants do not have to pay any

fees for experts, witnesses, document preparation, investigation, or paralegal services, which would easily

make the costs pile up.
6A plaintiff, for example, could be suing her employer for discrimination, and reinstatement or a

good reference might be more important for her than compensation.
7Damaska (1975).
8See, for example, Nader (1969), Abel (1982), and Norton (1989).
9In a similar vein, many others emphasize the factors that can cause disputant dissatisfaction that

are under the direct control of mediators. As a remedy, Tyler and Huo (2002) advocate the use of fair

procedures that are described as those in which decisions are viewed as neutral, objective, and consistent.

3



in actual disputes. Our modeling differs markedly from the traditional mechanism design

approach to bargaining that builds on the seminal work of Myerson and Satterthwaite

(1983), which postulates that traders have private valuations drawn from prespecified

distributions and commonly known utility functions. This type of “cardinal approach”

has been the subject of the famous Wilson critique, for its lack of “detail-freeness” and

potential inability to provide “robust incentives” to participants in the sense of Berge-

mann and Morris (2005). While stressing the powerful insights that mechanism design

offers in bargaining problems, Ausubel et al. (2002) voice a similar concern:

“... Despite these virtues, mechanism design has two weaknesses. First,

the mechanisms depend in complex ways on the traders’ beliefs and utility

functions, which are assumed to be common knowledge. Second, it allows too

much commitment. In practice, bargainers use simple trading rules—such as

a sequence of offers and counteroffers—that do not depend on beliefs or utility

functions.” 10

We aim to avoid this type of critique via an “ordinal approach” whereby the designer

truthfully elicits ordinal preference information in dominant strategies.11 Two common

justifications for the ordinal approach are the limited rationality of the agents partici-

pating in the mechanism and the genuine simplicity of implementing such mechanisms.12

This approach has been championed by its remarkable success in applications of match-

ing and assignment such as medical residency, college admissions, school choice, and

kidney exchange, where a plethora of strategy-proof and efficient mechanisms have been

proposed, extensively studied, and some even adopted in practice.

Our model assumes that two negotiators are in a dispute and aim to reach a resolu-

tion through a mediator. There is a main issue, issue X, consisting of a finite number

of alternatives, which is relevant to both parties’ welfare.13 The negotiators have dia-

metrically opposed preferences over the alternatives in the sense that if one negotiator

10 Handbook of Game Theory, Chapter 50: Bargaining with Incomplete Information.
11Our view should not be taken as one of universal endorsement of ordinal mechanisms over their

cardinal counterparts, but rather as advocating their use in a specific context where the former can offer

the practical convenience from a market design point of view. In a general mechanism design setting,

Carroll (2018) shows that one loses generality by restricting to ordinal mechanisms. He also provides

a foundation for ordinal mechanisms by showing that a planner can implement her goals robustly to

uncertainty about cardinal preferences only if she uses an ordinal mechanism. Another limitation of

ordinal mechanisms is that they cannot elicit preference intensities. See also Jehiel et al. (2006), Carroll

(2012), and Pycia (2014).
12There is a large body of experimental evidence that finds that the representation of preferences by

VNM utility functions may be inadequate; see, for example, Kagel and Roth (2016). This literature

argues that the formulation of rational preferences over lotteries is a complex process that most agents

prefer not to engage in if they can avoid it.
13We later relax the finiteness assumption.
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prefers one alternative over another, then the other negotiator has the exact opposite

ranking of the two alternatives.14 However, not all alternatives are acceptable for any

given negotiator. When offered an unacceptable alternative for her, a negotiator rejects

the mediator’s proposal and pursues alternative means of resolution, e.g., litigation. We

capture such circumstances by assuming an outside option whose ranking is each nego-

tiator’s private information. The mediator’s objective is to truthfully elicit negotiators’

private information about how they rank their respective outside options and propose an

efficient and mutually acceptable, i.e., individually rational, outcome.

We first show that if there is a single issue, i.e., no other issues than issue X, then there

is no strategy-proof, efficient, and individually rational mechanism. A long-standing and

commonly recognized theme in the practice of successful negotiation has been the two

sides’ ability to jointly discuss multiple issues where parties would be asked to consider a

compromise in one issue for a more favorable treatment in another. However, the previous

impossibility cannot be avoided by simply allowing for multiple issues if each issue has an

independent, similarly defined outside option, i.e., if for each issue each negotiator has an

outside option whose ranking is her private information. This motivates us to consider

a setting that treats different issues asymmetrically: Consider a second issue, issue Y ,

where the outside option is commonly known to be the least-preferred outcome for both

negotiators. This asymmetric treatment of the outside options for the two issues can be

motivated by various employment, family, construction, or patent/copyright infringement

disputes. Litigation is naturally the default option when the issue is compensation or

division of property. If parties expect litigation to be a very long and costly process,

then any division of surplus would be efficient relative to litigation. In that regard,

compensation could be considered to be issue Y in many such disputes.15

In the two-issue mediation problem,16 the mediator recommends a bundle (x, y) of

outcomes from X × Y . A mediation rule is a systematic way of choosing an outcome for

any reported pair of types of the two negotiators. Since the mediator asks the negotiators

to report their least preferred acceptable alternatives in issue X (recall that there is no

uncertainty regarding negotiators’ preferences over alternatives in issue Y ), one needs to

14We justify such modeling by showing that under a mild efficiency requirement, any situation where

negotiators’ preferences are not diametrically opposed can be equivalently represented as one where they

are (Proposition 1).
15In a bilateral negotiation between a worker and an employer, for example, issue Y could represent

wage and location options could represent issue X. In other contexts where Y again captures com-

pensation, agreements over change orders, extra work requirements, the scope of work (in construction

disputes), or child custody or terms of visitation (in family disputes) could be viewed as the main issue,

i.e., issue X, where each negotiator is uncertain about her opponent’s set of acceptable alternatives.

However, it is worth noting that although money is an important issue in disputes, it is rarely the only

issue (Malhotra and Bazerman, 2008).
16Our main model easily extends to the case of more than two issues. See Section 7.
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invoke extension mappings to obtain the set of all possible underlying preferences over

bundles.17 The main question we ask is whether there is an impartial and dominant

strategy incentive compatible, i.e., strategy-proof, way of soliciting true preferences so

that mediation outcomes are always efficient and individually rational. By invoking a

standard revelation principle with veto rights, any mediation game can be represented as

a direct revelation mechanism where negotiators announce their least-acceptable alter-

natives in a first stage. This announcement stage is then followed by a ratification stage

where negotiators are voluntarily asked to accept or veto the mediator’s recommendation

deliberated through the mediation rule. A mediation rule can simply be represented by

an m×m matrix, where m is the number of alternatives in either issue, and rows (respec-

tively, columns) correspond to different types of negotiator 1 (respectively, negotiator 2).

A mediation game has a dominant strategy equilibrium in which recommendations are

never vetoed if and only if the corresponding mediation rule is strategy-proof and (ex

post) individually rational.

A sufficient condition for obtaining a positive answer to our main question is the so-

called logrolling (quid pro quo) condition on negotiators’ preferences. This assumption

imposes a form of substitutability between issues X and Y . More specifically, logrolling

requires preferences to be rich enough that a negotiator is able to make concessions in

issue X for a more preferred alternative in issue Y , e.g., for a given pair of alternatives x

and x′ in X where x is preferred over x′, there exists a corresponding pair of alternatives

y and y′ in Y such that when bundled together, (x′, y′) is preferred over (x, y). This

condition rules out lexicographic treatment of the two issues and is compatible with

many common utility functions such as the CES and the quasi-linear utility.

Our main result is a complete characterization of the class of strategy-proof, efficient,

and individually rational mediation rules. These rules operate through an exogenously

specified precedence order over a set of special bundles, which we call the logrolling bun-

dles, and choose the highest-precedence logrolling bundle among those that are mutually

acceptable to both negotiators (Theorems 1 and 2). As the precedence order varies, the

characterized class of rules span what we refer to as the family of adjacent rules. A visual

characterization of this family establishes that a rule f belongs to the family if and only

if the lower half of the matrix representing f can be partitioned into rectangular regions,

where each rectangle corresponds to the set of problems for which the same logrolling

bundle is recommended (Theorem 3). The logrolling bundles form a simple lattice struc-

ture with respect to either negotiator’s preferences: given a set of mutually acceptable

17Alternatively, it is conceivable that the mediator elicits full preferences over bundles of alternatives.

This approach, which we do not pursue, however, has two drawbacks: First, the number of bundles to

rank increases quadratically with the number of alternatives in each issue, which in turn makes asking for

full-fledged rankings over bundles highly impractical for our problem. Second, an impossibility similar

to that in single-issue mediation would arise in this case.
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alternatives, for each negotiator there is always an optimal-logrolling bundle that she

prefers over all other acceptable logrolling bundles; this bundle is the pessimal-logrolling

bundle for the opposite negotiator. As a consequence, the family of adjacent rules nest

interesting special members. When the precedence order coincides with the preference

ranking of a given negotiator over the logrolling bundles, we obtain the corresponding

negotiator-optimal rule.

A negotiator-optimal rule represents situations when a mediator may be categorically

biased toward one side of the dispute. In keeping with our main objective of finding

impartial mediation rules, we search for members of this class of rules that satisfy sensible

fairness criteria. To this end, we define the “rank variance” of an outcome as the sum of

the square of each negotiator’s ranking of each alternative in each issue. It turns out there

is a unique member of the family of strategy-proof, efficient, and individually rational

mediation rules that minimizes rank variance across all mediation problems (Theorem 4).

This is the so-called constrained shortlisting rule, which recommends the median logrolling

bundle when it is mutually acceptable, and when it is not, the mutually acceptable

logrolling bundle closest to it. An equivalent way for the mediator to implement this rule

is as follows: The mediator solicits from one negotiator her favorite acceptable logrolling

bundle. He then offers a menu of options to the other negotiator, which includes this

bundle together with the median bundle if it is acceptable to the first negotiator and an

efficient disagreement bundle.

Logrolling assumes that it should be possible to reverse the ranking of every pair

of alternatives in issue X when bundled with a corresponding pair in issue Y . While

sufficient, the full power of this condition is not necessary for obtaining a possibility

result. We show that a weaker form of logrolling that requires only certain pairs of

alternatives in issue X to have a compensating pair of alternatives in issue Y is both

necessary and sufficient to obtain a strategy-proof, efficient, and individually rational

rule (Theorem 5). Alternatively, we offer an order-theoretic necessary and sufficient

condition for the existence of a possibility result. Although the full logrolling condition

implies a simple lattice structure, we find that to acquire a positive result, it is both

necessary and sufficient for the logrolling bundles to form a specific type of semilattice

structure. More precisely, a strategy-proof, efficient, and individually rational rule exists

on a preference domain if and only if any linked subset of the set of logrolling bundles

forms a join-semilattice when equipped with a partial order based on a concatenation of

negotiators’ preferences (Theorem 6).

An important extension of our model concerns situations where each issue consists

of a continuum of alternatives. For a continuous analogue of our main model, we show

that a mediation rule is strategy-proof, efficient, and individually rational if and only if

it maximizes a strict and quasi upper-semicontinuous precedence relation over the set of
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logrolling bundles (Theorem 7).

Related Literature

Both our paper and our modeling approach span and connect literature on bargaining,

two-sided assignment/matching, fair division, and political economy.

Foremost, mediation has been studied as part of the traditional bargaining literature

with incomplete information, which is primarily based on the cardinal approach discussed

above. A central question is whether private information prevents the bargainers from

reaping all possible gains from trade. The mechanism design approach to this problem

was pioneered by the classic paper by Myerson and Satterthwaite (1983) [henceforth

MS], which shows that for a model with transferable utility, there is no ex post effi-

cient, individually rational, and Bayesian incentive compatible mechanism when there is

uncertainty about whether gains are possible. The MS impossibility crucially depends

on types being independent.18 In our setup, since each negotiator privately knows the

realization of her outside option—which is also assumed to be independent of the other

negotiator’s realization—the MS model can be seen to correspond roughly to a case where

outside options are treated symmetrically. This helps explain the impossibility of attain-

ing strategy-proof, efficient, and individually rational mediation with symmetric outside

options (see the detailed discussion in Supplementary Appendix about how our model

compares with the MS setting).19

On the context of mediation, specifically, there are very few papers. For a model

featuring a continuum of types, Bester and Warneryd (2006) show that asymmetric in-

formation about relative strengths as an outside option in a conflict may render agree-

ment impossible even if there is no uncertainty about the agreement being efficient. In

their model, conflict shrinks the pie and agreement on a peaceful settlement is always

ex post efficient. Following Bester and Warneryd (2006), Hörner et al. (2015) compare

the optimal mechanisms with two types of negotiators under arbitration, mediation, and

unmediated communication. They show that there is no ex post efficient and Bayesian in-

centive compatible mechanism: the optimal mechanism is necessarily inefficient. Börgers

and Postl (2009) consider an arbitration problem with three alternatives (and no outside

options) between two agents who have diametrically opposed ordinal preferences. Their

18Subsequently, it was shown that efficient trade may be possible when types are correlated (e.g.,

Gresik 1991 and McAfee and Reny 1992).
19Compte and Jehiel (2007) consider bargaining problems where outside options are private but

correlated and parties have a veto right similarly to our mediation game. They show that inefficiencies

are inevitable whatever the exact form of correlation, which resonates with the negative result in our

benchmark model of single-issue mediation. This contrasts with the famous full rent extraction result of

Crémer and McLean (1988) mainly because of the assumption that agents can quit the mechanism. We

also adopt this perspective in our modeling and allow agents to veto a recommendation to exercise their

outside options.
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cardinal setting assumes that agents’ utilities of the middle-ranked alternative are i.i.d.

and privately observed. They show that there is no rule that truthfully elicits utilities

and implements efficient outcomes.

Obtaining a possibility result in our model hinges crucially on the availability of (at

least) a second issue. Linking multiple decisions/issues to overcome welfare and incentive

constraints has been a useful tool in many economic applications such as bundling of goods

by a monopolist (e.g., McAfee et al. 1989 ), agency problems (e.g., Maskin and Tirole

1990), and logrolling in voting (e.g., Wilson 1969). A common insight in these approaches

is based on applying a law of large numbers theorem to ensure that truthtelling incentives

are restored in a sufficiently large market. In this vein, Jackson and Sonnenschein (2007)

show that by linking different issues in many situations, including the bilateral bargaining

setting of MS, it is possible to achieve outcomes that are approximately efficient in an

approximately incentive compatible way as the number of issues goes to infinity. In

contrast with these approaches, we establish efficiency in dominant strategies with only

two issues in an application where the number of potential issues is inherently limited.

Our “ordinal approach” to mediation is inspired primarily by the success of market

design in several matching and assignment problems such as school choice, organ ex-

change, course allocation, landing slot assignments, and cadet-branch matching.20 Our

setup shares important conceptual and mathematical parallels with two-sided match-

ing and assignment models,21 when the negotiators are viewed to be on opposite sides.

Conceptually, logrolling bundles are analogous to stable matchings in the sense that the

negotiators have opposite preferences over them: if one negotiator would rather have the

mediator recommend an alternative logrolling bundle, the other negotiator would object

to it.22 Mathematically, the set of logrolling bundles coupled with either side’s preferences

forms a simple lattice (or a semilattice in the extended model) much like the structure

of the set of stable matchings in a two-sided market. Notably, a certain type of semi-

lattice structure proves both necessary and sufficient for attaining strategy-proofness in

our model. As a consequence, one connection with matching models that surfaces is that

we find the class of strategy-proof, efficient, and individually rational rules to contain

the negotiator-optimal rules. These rules, though logically unrelated, are akin to the

proposing-side optimal deferred acceptance mechanisms in two-sided matching and the

buyer/seller optimal core assignments in the Shapley-Shubik assignment game.

Although ordinal mechanisms are known to achieve better incentive properties than

20See, for example, Gale and Shapley (1962), Shapley and Shubik (1971), Crés and Moulin (2001),

and recent applications of ordinal assignment mechanisms such as Bogomolnaia and Moulin (2001),

Abdülkadiroglu and Sönmez (2003), Budish (2011), Switzer and Sönmez (2013), and Ergin et al. (2017).
21See Roth and Sotomayor (1990) for a survey of two-sided matching and assignment problems.
22The same can also be said for individual alternatives bundled together in a logrolling bundle: when-

ever one negotiator would favor a different alternative in either issue than the corresponding alternative

in the logrolling bundle, the other would oppose to the change.
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their cardinal contenders in matching problems,23 strategy-proofness (for all participants)

is not guaranteed in general. In two-sided one-to-one and many-to-one matching prob-

lems, for example, a stable mechanisms can be strategy-proof only for one side of the

market (see e.g., Roth and Sotomayor 1990).24

Absent outside options, our setting can also be viewed as a type of multi-unit assign-

ment problem, e.g., course allocation, with only two agents, each of whom needs to be

assigned two objects, one from each of two sets A and B, where an alternative in issue

X (respectively Y ) represents a specific pair of objects from set A (respectively B) that

must be assigned simultaneously.25 The multi-unit assignment setting, however, provides

little reason to remain optimistic for positive results. The literature contains a series of

papers that show impossibility results. The main result of this literature is that the only

strategy-proof and efficient rules are serial dictatorships; e.g., see Papai (2001), Klaus

and Miyagawa (2002), and Ehlers and Klaus (2003).26 Clearly, dictatorship rules have

little appeal in a dispute resolution situation. Worse still, dictatorships violate individual

rationality in our model,27 i.e., such recommendations will be vetoed in equilibrium.

A dispute resolution problem can also be interpreted as a type of fair division problem

involving indivisible items. The focal rule within the characterized family of adjacent

rules, the constrained shortlisting rule, allows one negotiator to effectively reduce the set

of possible outcomes to a short list, from which the other negotiator makes her favorite

selection. In that sense, the constrained shortlisting rule is reminiscent of the well-known

23For example, the most prominent cardinal mechanism in the context of unit-assignment problems

(possibly allowing for stochastic assignments), the competitive equilibrium from equal incomes solution

(Hylland and Zeckhauser 1979), is not strategy-proof. This difficulty of achieving strategy-proofness is

generally attributed to the tension with efficiency since cardinal mechanisms achieve stronger welfare

properties (e.g., maximization of utilitarian welfare) than ordinal mechanisms. Zhou (1990) shows that

no cardinal mechanism is strategy-proof, efficient, and symmetric, whereas ordinal mechanisms, e.g.,

random priority, are well known to attain the three properties.
24Similar to the literature on linking decisions, a common method of circumventing these impossibil-

ities is to resort to large market arguments by allowing for the number of participants and resources to

grow. Once again, such methods are obviously inapplicable in the context of mediation.
25Suppose set A contains three objects in the order of decreasing desirability, a, b, and c, where a and

c are in unit supply and b has two copies. Then issue X can be viewed as consisting of the following

object pairings X = {(a, c), (b, b), (c, a)}. That is, if one agent gets a, the other must get c, and b cannot

be assigned together with any other object.
26Results continue to be negative with private endowments (Konishi, Quint, and Wako, 2001) and

even with stochastic mechanisms (Kojima, 2009). In the course allocation context, two notable con-

tributions that identify nondictatorship mechanisms are Sönmez and Ünver (2010) and Budish (2011).

The former paper argues for eliciting bids from students together with ordinal preferences over courses

and then using a Gale-Shapley mechanism where bids are interpreted as course priorities. However, the

mechanism is strategy-proof only if the bids are treated as exogenously given. The latter paper proposes

an approximately efficient mechanism that is incentive compatible in a large market.
27A constrained dictatorship where one negotiator maximizes her welfare among the set of mutually

acceptable outcomes would satisfy individual rationality, but such a rule is easily manipulable.
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biblical rule of divide-and-choose, which has been extensively studied in fair cake-cutting

problems. Two advantages of the constrained shortlisting relative to divide-and-choose is

that it is strategy-proof and its outcome is independent of the ordering of the negotiators.

More generally, the fair division literature almost exclusively focuses on fairness and

efficiency issues due to inherent incompatibilities with strategy-proofness similar to those

in the multi-unit assignment context; see, e.g., Brams and Taylor (1996).

In our setting, in contrast to a matching or a fair division model, mediation is an

entirely voluntary process. As such, the mediator has no enforcement power and the

negotiators are free to walk away to exercise their private outside options. Such lack

of commitment to the mediator’s recommendation causes negotiators to create negative

externalities on each other. When one negotiator chooses to exercise her outside option

by vetoing the proposal, the other negotiator is automatically compelled to also exercise

her outside option.

Our model also resembles a voting setting where a number of voters have single-peaked

preferences over the political spectrum and a voting scheme aggregates individual pref-

erences (Black 1948). In our model, when restricted to each issue, preferences can also

be seen as single-peaked, with each negotiator preferring the opposite extremes of the

spectrum. This type of voting domains allows to overcome the Gibbard-Satterthwaite

impossibility, and the famous median voter theorem states that the majority-rule vot-

ing system that selects the Condorcet winner, i.e., the outcome most preferred by the

median voter, is strategy-proof; see Moulin (1980) for a classic generalization of this re-

sult. The constrained shortlisting rule can be viewed as similar to a Condorcet winner

in the sense that it recommends the median logrolling bundle when the median is mu-

tually acceptable for both negotiators and the closest logrolling bundle to it when it is

not. Nevertheless, this connection is superficial as our model differs in several ways from

a voting framework. In these voting models, there are several voters whose bliss point

(peak value) is their private information, whereas in our model there are two agents (the

negotiators) whose peaks in each issue are publicly known. What is private information

here consists in the two negotiators’ outside options, which have no analogues in a voting

model. Consequently, there is no clear way to adopt such voting schemes in our setup,

as they would violate individual rationality. Moreover, the above analogy between the

two types of models applies only when each issue is considered separately, since negotia-

tors’ underlying joint preferences over bundles in our two-issue model are not necessarily

single-peaked.28

28An alternative view could be based on a multi-issue voting setting. However, in multidimensional

voting models where people vote on several issues, a main conclusion is that strategy-proofness effectively

requires each dimension to be treated separately in the sense that each dimension should admit its own

generalized median voter schemes, see, e.g., Barberà et al. (1991) and Barberà et al. (1997). Our

strategy-proofness result, by contrast, depends critically on having more than one dimension and relies
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Finally, with the hope of arriving at possibility results, there is a tradition of searching

for strategy-proof mechanisms in restricted economic environments that make it possible

to escape Arrow-Gibbard-Satterthwaite impossibilities. Well-known examples include

VCG mechanisms (Vickrey 1961, Groves 1973, and Clarke 1971) for public goods and

private assignment with transfers;29 the uniform rule (Sprumont 1991) for the distribution

of a divisible private good under single-peaked preferences; generalized median-voters

(Moulin 1980); proportional-budget exchange rules (Barberà and Jackson 1995) that

allow for trading from a finite number of prespecified proportions (budget sets), deferred

acceptance (Gale and Shapley 1962) and top trading cycles (Shapley and Scarf 1974,

Abdülkadiroglu and Sönmez 2003); and hierarchical exchange and brokerage (Pápai 2001,

Pycia and Ünver 2017). We also add to this literature by introducing and characterizing

an entirely new class of strategy-proof and efficient rules.

The rest of the paper is organized as follows. Section 2 introduces the problem with a

simple example. Section 3 describes the main model. Section 4 provides various charac-

terizations of strategy-proof, efficient, and individually rational rules. Section 5 gives two

sets of necessary and sufficient conditions for the existence of a strategy-proof mediation

rule. Section 6 extends the main model to the case when there is a continuum of alterna-

tives. Section 7 provides a discussion of our modeling assumptions and other extensions.

Section 8 concludes. The Supplementary Appendix contains illustrations of logrolling

and the proof of the revelation principle. All proofs are relegated to the Appendix.

2. The Environment

We begin by describing the environment with a simple example and a brief discus-

sion about why the assumption of diametrically opposed preferences is without loss of

generality.

A simple example: Single-issue mediation

Negotiators 1 and 2 are in dispute over a single issue that is important to both of

them. Let x1 and x2 denote the available alternatives for (solutions to) the dispute. Each

negotiators is also entitled to a private outside option, o, e.g., the negotiator’s private

heavily on leveraging the exchangeability between the two issues together with an asymmetric treatment

of outside options.
29One may draw a conceptual parallel with the family of adjacent rules and the VCG mechanisms in

a combinatorial multi-item setting with transferable utility. In the VCG model, cardinal preferences over

items are private information and the preferences over money is common knowledge. This is much like

negotiators’ preferences over issue X (where complete preference rankings including the outside option

are private information) versus issue Y (where complete preference rankings including the outside option

are publicly known). Note, however, that VCG mechanisms are cardinal; assignments and transfers

depend on reported utilities. Also see Supplementary Appendix.
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belief about the outcome of an alternative adjudication process, in case one or both of

them reject the mediator’s recommendation. Therefore, the set X = {x1, x2, o} denotes

the set of all possible outcomes of the dispute.

It is common knowledge that the negotiators have diametrically opposed preferences

over the alternatives x1 and x2, i.e., negotiator 1 (strictly) prefers alternative x1 to x2

and negotiator 2 prefers x2 to x1. The ranking of the outside option, however, is the

negotiators’ private information. Therefore, each negotiator has two types:30

θx11 θx21
x1
o
x2

x1
x2
o

θx22 θx12
x2
o
x1

x2
x1
o

Consider the mediation process, denoted by f , as a mechanism with veto rights that

maps the negotiators’ private information to an outcome in X. Then, it would be repre-

sented by the following matrix:

θx21

θx11

θx12 θx22

f2,1 f2,2

f1,1 f1,2

where f`,j ∈ X for all `, j ∈ {1, 2}.
We can assign f1,2 = o, without loss of generality, because there is no mutually

acceptable alternative when the negotiators’ types are θx11 and θx22 , and thus, the outside

option o is effectively the only result in all voluntary mediation processes. If the outcomes

of the mediation process are (Pareto) efficient, then f1,1 should be x1 or x2. Moreover,

if the process produces individually rational outcomes, then we must have f1,1 = x1.

Likewise, an efficient and individually rational mediation process suggests f2,2 = x2 and

f2,1 ∈ {x1, x2}.
However, none of these processes is immune to strategic manipulation. To see this

point, suppose that f2,1 = x1. In this case, type θx12 of negotiator 2 would deviate and

declare his type as θx22 to obtain x2, contradicting strategy-proofness. Symmetrically, if

f2,1 6= x1, then type θx21 of negotiator 1 would deviate and declare her type as θx11 to

obtain x1, again contradicting strategy-proofness.

Note that this impossibility prevails even when the mediation mechanism is allowed

to be stochastic.31 It is straightforward to extend this example to the case with more

than two alternatives, and so extrapolate that there exists no strategy-proof, efficient,

and individually rational single-issue mediation process.

30We assume, without loss of generality, that there is at least one acceptable alternative for each

negotiator.
31In that case, the only difference in the argument would be that f2,1 would choose a lottery over x1

and x2. However, the above deviations would still remain profitable.
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Modeling conflicting preferences

When describing a dispute, using diametrically opposed preferences over alternatives

is intuitive because it resembles the standard bargaining problem, which is modeled as a

zero-sum game. It is also unavoidable when the number of available alternatives is just

two. However, it is conceivable that many other situations, where preferences are not

necessarily diametrically opposed, could also depict a dispute where there are more than

two alternatives. Consider, for example, a case where the set of available alternatives

(other than the outside option) is A = {x1, x2, x3, x4, x5} and the negotiators’ preferences

are as follows:

θ1 θ2
x1
x2
x3
x4
x5

x3
x5
x4
x2
x1

These preferences are not diametrically opposed, but they are certainly conflicting—

to some degree—as the agents cannot agree on their best alternative. Notice, however,

that alternatives x4 and x5 are (Pareto) dominated by x3, and so, if selecting an efficient

outcome by the mediation protocol is desired, then the presence of these two alternatives

is irrelevant for the problem. Thus, this particular dispute problem can be transformed

into a simplified and “outcome equivalent” version where the only available alternatives

are x1, x2, and x3 and the negotiators’ preferences over these three are diametrically

opposed. We can generalize this observation for any (discrete) set of alternatives and for

any preference profile, where negotiators cannot agree on their first best alternative.

Let A be nonempty set of available alternatives and Θ be the set of all complete,

transitive, and antisymmetric preference relations on A. Define max(θ) as the maximal

element of the preference ordering θ ∈ Θ, namely if x? = max(θ), then x? θ x for all

x ∈ A \ {x?}. Therefore, a two-person, single-issue dispute (dispute in short)

problem is a list D = (θ1, θ2, A) where θi ∈ Θ for i = 1, 2 and max(θ1) 6= max(θ2).

For any nonempty subset ‹A ⊆ A, let θ|
Ã

denote the restriction of the preference

ordering θ ∈ Θ on ‹A. Therefore, define D̃ = (θ̃1, θ̃2, ‹A) to be a dispute reduced from

D = (θ1, θ2, A) whenever ‹A ⊆ A and θ̃i = θi|Ã for i = 1, 2.

Proposition 1. By eliminating all the Pareto inefficient alternatives, any dispute D can

be reduced to an equivalent dispute D̃ where the negotiators’ preferences are diametrically

opposed.

All proofs are deferred to the Appendix. A similar result, which we omit for brevity,

holds for two-person, multi-issue disputes whenever preferences over bundles satisfy mono-

tonicity.32

32See the next section for the formal definition of monotonicity.
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3. The Main Model: Multi-Issue Mediation

There are two negotiators, I = {1, 2}, in a dispute who aim to reach a resolution

through a mediator. Without loss of generality, there are two issues that are important

to the negotiators’ welfare.33 Let the sets X = {x1, ..., xm, oX} and Y = {y1, ..., ym, oY },
where m ≥ 2, respectively denote the finite sets of potential outcomes for the main

issue and the second issue. We assume, for expositional simplicity, that the cardinality

of the sets of alternatives in the two issues is the same.34 The sets X \ {oX} and Y \ {oY }
are the sets of available alternatives. Each negotiator is entitled to an outside option

(disagreement point) for each issue, oX and oY , in case either negotiator refuses to accept

an alternative that is available for that issue. We refer to negotiators as “she” and to the

mediator as “he”.

Preferences over Outcomes: The negotiators’ preferences over outcomes for each

individual issue satisfy the following three conditions:

1. The negotiators’ preferences over alternatives (not including the outside option) for

each individual issue are diametrically opposed and public information.

2. Each negotiator’s ranking of her outside option oX (relative to the other alternatives)

in issue X is her private information.

3. It is public information that both negotiators rank the outside option oY in issue Y

as their worst outcome.

More formally, for any issue Z ∈ {X, Y }, where Z = {z1, ..., zm, oZ}, let ΘZ
i denote the

set of all complete, transitive, and antisymmetric preference relations of negotiator i ∈ I

over issue Z and θZ
i denote an ordinary element of the set ΘZ

i . It is publicly known that

zk θ
Z
1 zk+1 and zk+1 θ

Z
2 zk for all k = 1, ...,m − 1. Namely, the negotiators’ preferences

over the alternatives for each issue are diametrically opposed (the first condition). The

ranking of the outside option in issue X, oX, is the negotiators’ private information

(the second condition). Finally, it is common knowledge that y θY
i oY for all i and

y ∈ Y \ {oY } (the third condition). Therefore, the set of acceptable alternatives for issue

X is privately known by the negotiators, and it is unknown to them whether there is

a mutually acceptable alternative for that issue. However, any alternative in issue Y

is acceptable to both negotiators and efficient. Note that there is a unique preference

ordering in ΘY
i and m+ 1 possible orderings in ΘX

i . Without loss of generality, we ignore

33The extension to the case with more than two issues is discussed in Section 7.
34 This assumption is without loss of generality. All that is needed for our results to go through is

that the number of alternatives in issue Y must be greater than or equal to the number of alternatives

in issue X. A more detailed discussion of how to extend the analysis to the case where #Y > #X is

deferred to Section 7.
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those types that declare all alternatives in X unacceptable. Let Θi = ΘX
i denote the set

of all types for negotiator i, and Θ = Θ1×Θ2 the set of all type profiles. For the rest of

the paper we use θi instead of θX
i to indicate negotiator i’s preferences over the outcomes

in issue X. However, when we need to distinguish i’s preferences over issues X and Y ,

then we use θX
i and θY

i , respectively.

The asymmetric treatment of the outside options in the above formulation is motivated

by practical and theoretical considerations. For example, the quality of the reference

letter that a former employer would be willing to write (in an employment dispute), or

the terms of child custody or visitation (in a family dispute), could be considered the main

issue. In this type of issues, typically every alternative is not acceptable for a negotiator.

Moreover, a negotiator’s ranking of the outside option is not clear to all the parties. Thus,

such situations would correpond to issue X. In various employment, family, construction,

or patent/copyright infringement disputes, litigation is the standard form of resolution

in cases of disagreement when the issue is one of monetary compensation or division

of property. Often in such disputes litigation, i.e., the outside option, is a very long,

administratively costly, and highly inefficient process relative to other potential divisions

(alternatives), as discussed in the Introduction. As such, these types of issues would

correspond to issue Y in our framework. Nonetheless, it is possible to find situations where

the ranking of the outside option in both issues is the negotiators’ private information.

For that reason, the symmetric treatment of the outside option in both issues is formally

investigated in Section 7. Unfortunately, it turns out that it is not possible to achieve

strategy-proof, efficient, and individually rational mediation in this case, which also leads

us to focus on the current setting.

Preferences over Bundles: A bundle (x, y) is a vector of outcomes, one for each

issue, and the set X × Y denotes the set of all bundles. Let < denote the set of all

complete and transitive binary relations over the bundles. Relation R is a standard

element of the set <, and for any two bundles b, b′ ∈ X × Y , b R b′ means “b is at least

as good as b′.” Let P denote the strict counterpart of R.35 We assume that the mediator

asks each negotiator to report her type, i.e., her least-acceptable alternative in X, rather

than her full-fledged preferences over all bundles. Negotiators’ underlying preferences over

bundles are then assumed to be compatible with the reported types and to satisfy certain

conditions, which we shortly define. While it is not without loss of generality, we offer

two justifications for this assumption. First and foremost, asking negotiators to report

full preferences over (m + 1)2 bundles is arguably impractical and cumbersome, which

conflicts with the ease and convenience expected from the informal mediation process.

Second, it can be shown that such a modeling would again lead to an impossibility similar

35That is, b P b′ if and only if b R b′ but not b′ R b.
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to that in the case of single-issue mediation. To obtain the set of possible preferences

compatible with the reported types, we invoke an extension map that satisfies certain

regularity axioms. Using extension maps to deduce complete preferences is a common

tool in social choice theory pioneered by Barberà (1977) and Kelly (1977) as a way to

explore the strategy-proofness of social choice correspondences.36 An extension map is a

rule Λ that assigns to every negotiator i and type θi ∈ Θi a nonempty set Λ(θi) ⊆ < of

admissible orderings over bundles.

For any negotiator i and type θi ∈ Θi, let A(θi) = {x ∈ X| x θi oX} denote the

set of acceptable alternatives in issue X. For any type profile (θ1, θ2) ∈ Θ, let the

set A(θ1, θ2) = {x ∈ X| x θi oX for all i ∈ I} denote the set of mutually acceptable

alternatives in issue X. In case we need to specify a type’s acceptable alternatives, we

use θxi ∈ Θi: it denotes the preference relation (type) of negotiator i in which alternative

x ∈ X is the least acceptable alternative. Namely, for any x′ ∈ X \ {oX}, x θxi x′ =⇒
oX θxi x

′.

Definition 1. The extension map Λ is regular if the following hold for all i, θi ∈ Θi

and all Ri ∈ Λ(θi):

i. [Monotonicity] For any x, x′ ∈ X and y, y′ ∈ Y with (x, y) 6= (x′, y′),

(x, y) Pi (x′, y′) whenever
î
x θX

i x′ or x = x′
ó

and
î
y θY

i y′ or y = y′
ó
.

ii. [Deal-breakers] For any y, y′ ∈ Y and x, x′ ∈ X with x θi oX θi x
′ and y 6= oX,

(x, y) Ri (oX, y
′) Ri (x′, y).

Monotonicity is a standard requirement. The second condition says that a bundle

with an acceptable alternative in the main issue is always preferred over a bundle with

the outside option, which in turn is always preferred over a bundle with an unacceptable

alternative, regardless of the alternatives chosen for the second issue. In particular, unac-

ceptable alternatives in issue X are “deal-breakers” for the negotiators. Namely, a bundle

including an unacceptable alternative is never acceptable regardless of the alternative it

chooses for the second issue. Put differently, for an unacceptable alternative x in issue

X, there is no sufficiently attractive alternative y in issue Y that can make the bundle

combining the two alternatives acceptable. For example, in an employment negotiation

between a candidate and a company with multiple offices in different cities/countries, the

candidate would have strict locational preferences that make some alternatives unaccept-

able regardless of the wage offered by the employer. Similarly, in family disputes, certain

36For such an analysis to be carried out, individual preferences over sets are required. A typical ap-

proach is to infer this information from individual preferences over alternatives through certain extension

axioms which assign to every ordering over alternatives a list of acceptable orderings over sets. See also

Duggan and Schwartz (2000) and Barberà et al. (2001).
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terms of visitation may be unacceptable independent of the outcome of the division of

family property. We make this assumption for mathematical tractability, but otherwise,

it is not needed for a possibility result. (See Section 7 for further discussion, where we

provide a strategy-proof, efficient, and individually rational mediation rule in a domain

of preferences that violate this assumption.)

Direct Mechanisms with Veto Rights: Mediation would potentially be a very com-

plicated, multistage game between the negotiators and the mediator. The mediation

protocol, whatever the details may be, produces proposals for agreement that are always

subject to unanimous approval by the negotiators. That is, before finalizing the protocol,

each negotiator has the right to veto the proposal and exercise her outside option.

A version of the revelation principle, which we prove in the Supplementary Appendix,

guarantees that we can stipulate the following type of a direct mechanism without loss

of generality when representing mediation. The direct mechanism consists of two stages:

an announcement stage and a ratification stage; and it is characterized by a mediation

rule f : Θ → X × Y . After being informed of her type, each negotiator i privately

reports her type, θ̂i, to the mediator, who then proposes f(θ̂1, θ̂2) ∈ X × Y . In the

ratification stage, each party decides whether to accept or veto the proposed bundle. If

both negotiators accept the proposed bundle, then it becomes the final outcome. If either

or both negotiators veto the proposal, each party gets the outside option for both issues,

i.e., (oX, oY ).37 Such two-stage mechanisms will be called direct mechanisms with veto

rights. Next we define the main properties we impose on mediation rules.

Definition 2. The mediation rule f is strategy-proof if for all i and all θi ∈ Θi,

f(θi, θ−i) Ri f(θ′i, θ−i) for all Ri ∈ Λ(θi), θ′i ∈ Θi and all θ−i ∈ Θ−i.

Definition 3. The mediation rule f is individually rational if for all i and all

(θi, θ−i) ∈ Θ, f(θi, θ−i) Ri (oX, oY ) for all Ri ∈ Λ(θi).

Definition 4. The mediation rule f is efficient if there exists no (θi, θ−i) ∈ Θ and

(x′, y′) ∈ X × Y such that (x′, y′) Ri f(θi, θ−i) for all Ri ∈ Λ(θi) and all i ∈ I, and for at

least one i ∈ I, (x′, y′) Pi f(θi, θ−i) for some Ri ∈ Λ(θi).

Strategy-proofness requires truthful revelation of one’s type to be her dominant strat-

egy whatever her underlying preferences may be regardless of the type the opposite ne-

gotiator reports. It is worth noting that, coupled with the extension map Λ, this is a

stronger incentive requirement than a standard strategy-proofness property that would be

based on a full preference report of negotiators. As will be discussed following Theorem

37It does not matter whether voting in the ratification stage is simultaneous or sequential. However, it

is critical that the parties vote on the proposed bundle as a whole rather than voting on each component

separately. As we further discuss in Section 7, the latter alternative leads to impossibility.
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1, this will in turn require us to impose additional restrictions on the underlying prefer-

ences to attain possibility results. Individual rationality guarantees an outcome at least

as good as what each negotiator would receive were she to walk away from mediation and

thus ensures that the mediator’s proposals are never vetoed no matter what the under-

lying preferences are. Efficiency says that it should not be possible to find an alternative

proposal that would make both parties better off at all possible preferences and one party

strictly better off at at least one preference profile. Contrary to the improved strength

of strategy-proofness, the dependence of the efficiency definition on the extension map Λ

implies a weaker form of efficiency than would be the case under a standard requirement.

In fact, it is easy to verify that an outcome is efficient (individually rational) if and only if

it is issue-wise efficient (individually rational), i.e., an efficient bundle chooses a mutually

acceptable alternative for issue X when such an alternative exists (and never chooses a

mutually unacceptable alternative for issue X otherwise) and never chooses the outside

option for issue Y ; an individually rational bundle never chooses an alternative from X

that is unacceptable to at least one negotiator.

We seek direct mechanisms with veto rights in which truthful reporting of types at

the announcement stage is a dominant strategy equilibrium and the mediator’s proposals

are never vetoed in equilibrium. It immediately follows from the definitions that such an

equilibrium exists if and only if the mediation rule f is strategy-proof and individually

rational.38

4. Main Results: Strategy-Proof Mediation

It is convenient to represent a mediation rule f by an m×m matrix f = [f`,j](`,j)∈M2 ,

where f`,j = f(θx`1 , θ
xj
2 ) and M = {1, ...,m}. The rows of this matrix correspond to

possible types of negotiator 1 and the columns to possible types of negotiator 2.

f =

θxm1

...

θx11

θx12
. . . θxm2

fm,1 . . . fm,m

...
. . .

...

f1,1 . . . f1,m

More specifically, in the matrix representation above, row (respectively, column) `

indicates the type of negotiator 1 (respectively, 2) that finds all alternatives {xk|k ≤ `}Ä
respectively, {xk|k ≥ `}

ä
acceptable. For any reported pair of types (θx`1 , θ

xj
2 ), rule f

chooses an outcome f`,j ∈ X × Y . It follows that there is a unique mutually acceptable

alternative in issue X for the type pairs that correspond to an entry on the diagonal of the

matrix, i.e., {f`,` | ` ∈ M}. Furthermore, there is no mutually acceptable alternative in

38See the Supplementary Appendix.

19



issue X for the type pairs that correspond to an entry in the upper half of the matrix. We

start with a partial characterization of the set of strategy-proof, efficient, and individually

rational mediation rules.

Theorem 1. Suppose that the extension map Λ is regular and f is a strategy-proof,

efficient, and individually rational mediation rule. Then there exists a unique one-to-

one function t : X → Y such that for all i, θi ∈ Θi and all x, x′ ∈ A(θi), we have

x θi x
′ =⇒ t(x′) θY

i t(x). Furthermore, the following hold for all `, j ∈M :

(i) If ` < j, then f`,j = (oX, y) for some y ∈ Y \ {oY }.

(ii) If ` = j, then f`,j = (x`, t(x`)).

(iii) (Adjacency) If ` > j, then f`,j ∈ {f`−1,j, f`,j+1} ⊂ B, where B ≡ {(xk, t(xk)) ∈
X × Y

∣∣∣k = 1, ...,m}, and there exists a strict (i.e., complete, transitive, and anti-

symmetric) precedence order B on B such that

f`,j =

 f`−1,j, if f`−1,j B f`,j+1

f`,j+1, oth.

Part (i) of Theorem 1 says that when there is no mutually acceptable alternative in

issue X, the mediation rule always chooses a designated bundle at which the outside

option in X is coupled with some efficient alternative in Y . In this case, the media-

tion rule provides only a partial resolution to the dispute because of the severity of the

diasagrement on issue X.

Parts (ii) and (iii) reveal that any mediation rule satisfying the three properties, i.e.,

strategy-proofness, efficiency, and individual rationality, must always make selections

from a special set of bundles when the set of mutually acceptable alternatives in issue

X is nonempty. At these bundles, for each alternative in X, there is a corresponding

distinct alternative in Y with which it must be paired. Interestingly, these bundles have

the property that a more preferred alternative from issue X is paired with a ranking-

wise equally less-preferred alternative from issue Y . Specifically, at such a bundle, if a

negotiator is receiving her first-most favorite alternative fromX, she must be receiving her

least favorite alternative from Y ; if she is receiving her second-most favorite alternative

from X, she must be receiving her second-least favorite alternative from Y and so on. By

transitivity, x θi x
′ =⇒ t(x′) θY

i t(x) implies that alternative xk is paired with alternative

ym−k+1. We interpret these bundles as representing possible “compromises” between the

two issues. As such, we henceforth call a bundle (xk, ym−k+1) ∈ X × Y a logrolling

bundle. The set B consists of all the logrolling bundles.

Part (ii) says that the set of logrolling bundles constitute the “backbone” of every

strategy-proof, efficient, and individually rational rule. That is, the diagonal of any
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such rule must always be comprised of the logrolling bundles. Part (iii) characterizes

all possible assignment formations in the lower half of the diagonal. In particular, the

logrolling bundles on the diagonal “propagate” in the southwestern direction following

an adjacency requirement. Any entry in the lower half of the diagonal must be assigned

a bundle that coincides with the outcome in the entry either immediately above it or

immediately to its right. Given the structure of the main diagonal in part (ii), using the

adjacency condition f`,j ∈ {f`−1,j, f`,j+1} in part (iii), one can obtain the distribution of

the bundles for the diagonal entries immediately to the left of the main diagonal, which

can then be used to determine the distribution of the diagonal entries immediately to

the left of those, and so on, until the corner entry fm,1 is finally determined. Another

important implication of the three properties is that the mediator has discretion over

the choice of a precedence order B on the set of logrolling bundles, which he must

use to make “consistent” selections as to which of the two (diagonally) adjacent bundles

takes precedence when fullfilling the adjacency condition. The higher precedence bundle

is always the “winner” between any two diagonally adjacent logrolling bundles.

For the rest of the paper, we call a mediation rule f an adjacent rule if it satisfies

parts (i)− (iii) of Theorem 1 and denote it by fB whenever we need to specify the binary

relation B that is used to construct f . Different precedence orders can lead to different

mediation rules. Theorem 3 provides a complementary visual characterization of the set

of all possible adjacent rules. Before giving a sketch of the proof of Theorem 1, we provide

an example of these rules.

Example 1 (An adjacent rule): Let each issue consist of five alternatives, i.e., m = 5.

The set of logrolling bundles in this case is B =
¶
(x1, y5), (x2, y4), (x3, y3), (x4, y2), (x5, y1)

©
.

Let us construct the adjacent rule fB associated with the precedence order B where

(x5, y1) B (x1, y5) B (x4, y2) B (x2, y4) B (x3, y3).

Whenever the negotiators have no mutually acceptable alternative in issue X, i.e., part

(i), let the rule pick the bundle (oX, y3). The main diagonal, i.e., part (ii), is filled with

the members of the set of logrolling bundles, B, e.g., we have f1,1 = (x1, y5) in the first

diagonal entry, f2,2 = (x2, y4) in the second diagonal entry, etc. For the rest of the matrix,

iterating the adjacency condition together with the precedence order fully determines the

distribution of the logrolling bundles. Since the logrolling bundle (x5, y1) has higher

precedence than all other bundles in B, it “beats” all of its diagonally adjacent neighbors

at any possible binary comparison. Hence, bundle (x5, y1) claims all the entries to its

southwest, which amounts to the set of all entries on the bottom row to the left of f5,5.

The second-highest precedence bundle is (x1, y5), and it similarly claims all the unfilled

entries to its southwest. Thus, starting from the entry f1,1 on the main diagonal, all the
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remaining empty entries on the first column fill up with (x1, y5). Iterating this process

for all the logrolling bundles in the precedence order yields the following matrix:

θx51

θx41

θx31

θx21

θx11

θx12 θx22 θx32 θx42 θx52

(x1, y5)

(x2, y4)

(x3, y3)

(x4, y2)

(x5, y1)(x5, y1) (x5, y1) (x5, y1) (x5, y1)

(x1, y5)

(x1, y5)

(x1, y5)

(x4, y2)

(x2, y4)

(x4, y2)

(x3, y3)

(oX, y3) (oX, y3) (oX, y3) (oX, y3)

(oX, y3) (oX, y3) (oX, y3)

(oX, y3) (oX, y3)

(oX, y3)

Figure 1: A standard member of the adjacent rules family

Sketch of the proof of Theorem 1: We now provide a sketch of some of the main

ideas behind the proof of Theorem 1 using a simple example. Suppose that m = 3 and

f is a strategy-proof, efficient, and individually rational mediation rule over a domain of

preferences that satisfy the monotonicity and deal-breakers properties. We first argue that

there must exist three distinct alternatives yx1 , yx2 , yx3 in issue Y such that negotiator 1

prefers yx3 to yx2 and yx2 to yx1 . Therefore, given that Y \{oY } = {y1, y2, y3}, we must have

yx3 = y1, y
x2 = y2, and yx1 = y3, and so, t(xk) = y4−k for k = 1, 2, 3. Then, we argue that

mediation rule f always offers one of the bundles from set B =
¶
(x1, y3), (x2, y2), (x3, y1)

©
whenever negotiators have at least one mutually acceptable alternative in issue X.39

A strategy-proof, efficient, and individually rational mediation rule f is illustrated in

the following matrix:

θx31

θx21

θx11

θx12 θx22 θx32

f3,1 f3,2 (x3, y
x3)

f2,1 (x2, y
x2)

(x1, y
x1)

(oX , y
o)

(oX , y
o)(oX , y

o)

In the upper half of the matrix, i.e., ` < j, there is no mutually acceptable alternative

in issue X. Thus, individual rationality and the regularity of preferences require that f

must suggest a bundle with oX, and efficiency requires that the second alternative must

be different from oY . Finally, strategy-proofness and monotonicity imply that f must

suggest the same bundle (oX, y
o) at all `, j ∈ M with ` < j, for otherwise a negotiator

can mimic a type where she receives a more preferred alternative from Y .

39Note that this example (and Theorem 1) can be extended to the case where #Y > 3. In that case,

it would be such that B =
{

(x1, y
x1), (x2, y

x2), (x3, y
x3)
}

for some triplet of alternatives in Y \ {oY }
satisfying the property that yx3 θY

1 yx2 θY
1 yx1 . See Section 7 for more on this.

22



For determining the values of the entries over the main diagonal, note that the only

mutually acceptable alternative in issue X is x1 when negotiator 1 is of type θx11 and

negotiator 2 is of type θx12 . Individual rationality, deal-breakers, and monotonicity imply

that the entry f1,1 is either (x1, y) or (oX, y) for some y ∈ Y . Efficiency and monotonicity

require y 6= oY . The same reasoning applies to the rest of the diagonal entries, and so let

(x1, y
x1), (x2, y

x2), and (x3, y
x3) denote the three bundles on the diagonal.

Next, we argue that yx3 θY
1 yx2 θY

1 yx1 must hold. Suppose that f2,1 = (x, y) for

some x ∈ X and y ∈ Y . The set of mutually acceptable alternatives in issue X is

{x1, x2} when the negotiators’ types are θx21 and θx12 , and thus, individual rationality,

efficiency, deal-breakers, and monotonicity imply that x ∈ {x1, x2}. If x = x1, then we

must have y = yx1 . Suppose, for a contradiction, that y 6= yx1 . Then either y is better

or worse than yx1 for negotiator 1. If it is better (worse), then type θx11 (θx21 ) prefers

to deviate to θx21 (θx11 ) since monotonicity implies that (x1, y) is better (worse) than

(x1, y
x1), contradicting strategy-proofness. Once we establish that (x, y) = (x1, y

x1), it is

easy to see that negotiator 2 prefers yx1 to yx2 by strategy-proofness and monotonicity,

for otherwise type θx12 would deviate to θx22 . Therefore, we must have yx1 θY
2 yx2 , or

equivalently, yx2 θY
1 yx1 since negotiators’ preferences over alternatives are diametrically

opposed. On the other hand, if x = x2, then a symmetric argument for negotiator 2

implies that we must have y = yx2 and negotiator 1 prefers yx2 to yx1 by strategy-proofness

and monotonicity. Thus, for any feasible values of x, we must have yx2 θY
1 y

x1 . This proves

that (1) f2,1 ∈ {(x1, yx1), (x2, y
x2)} and (2) yx2 θY

1 yx1 . Symmetric arguments imply that

f3,2 ∈ {(x2, yx2), (x3, y
x3)} and yx3 θX

1 yx2 . Hence, transitivity implies yx3 θY
1 y

x2 θX
1 yx1 as

we claimed.

Since f is efficient and individually rational, f3,1 must be a bundle with x1, x2, or

x3. Similar to previous arguments, if it includes x1 or x3, then the second alternative

must be yx1 or yx3 , respectively. However, if it is a bundle with x2, then the alternative

in issue Y must be different from yx1 and yx3 by strategy-proofness and monotonicity.

Therefore, we have f3,1 = (x2, y) such that negotiator 1 ranks y above yx1 and below yx3 .

Therefore, f must always offer a bundle from the set B when negotiators have at least

one mutually acceptable alternative. Similar to earlier arguments, we can conclude that

f`,j ∈ {f`−1,j, f`,j+1} for all `, j ∈M with ` > j.

Finally, it can be shown that strategy-proofness requires that when the mediation

rule selects one of two diagonally adjacent bundles for the entry between them, it can-

not reverse that choice at another instance where the two bundles are again diagonally

adjacent. More specifically, strategy-proofness effectively leads us to identify a transitive

and antisymmetric precedence order on the set of logrolling bundles. We construct the

order B by performing pairwise comparisons for all the entries f`,j, f`−1,j, f`,j+1. This con-

struction generates a partial order B on B, which can then be completed in an arbitrary
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fashion to obtain a strict precedence order.40

Full Characterization and Logrolling (Quid Pro Quo)

Theorem 1 characterizes the necessary conditions a strategy-proof, efficient, and in-

dividually rational mediation rule must satisfy. It is easy to verify that any adjacent

rule satisfying the three parts of Theorem 1 is also efficient and individually rational.41

Recall that our preference domain allows for any preferences meeting the monotonicity

and the deal-breakers properties. In particular, we have so far made no assumptions

whatsoever as to the relative importance of the two issues for the two negotiators. Con-

sider, for example, a scenario where alternatives in issue Y have little appeal for the

negotiators compared to those in issue X, e.g., preferences are lexicographic over the two

issues with each negotiator mainly caring about her outcome from issue X. Then there

is little reason to suspect that the impossibility in the single-issue case will be overturned

in the two-issue world. In such a scenario, ignoring any possible alternatives she may be

assigned from issue Y , a negotiator can easily manipulate an adjacent rule by using a

truncation strategy much like in the example given in Section 2. Consequently, obtaining

strategy-proofness inevitably necessitates more restrictions on the underlying preferences

beyond monotonicity.

An adjacent rule always chooses a logrolling bundle when mediation is mutually ben-

eficial for resolving the conflict in issue X, where such a bundle complements a more

desirable alternative from one issue with a less desirable alternative from the other issue.

Since the class of adjacent rules contains the only candidates that can achieve the three

properties by Theorem 1, ensuring that an adjacent rule is strategy-proof automatically

entails imposing a discipline on preferences regarding how negotiators rank the logrolling

bundles. It then follows that the preference domain should permit the possibility that the

negotiators are willing to make compromises in issue X for a more favorable treatment

in issue Y . Put differently, it should be possible to find some alternatives in issue Y that

are sufficiently attractive for at least one of the negotiators to reverse her ranking of some

alternatives in issue X when they are bundled together. We start with a strong version

of this requirement that will be sufficient to ensure the strategy-proofness of all adjacent

40Consequently, different strict precedence orders may lead to the same mediation rule. In this sense,

it is possible to replace the strict precedence order in statement of Theorem 1 with a corresponding

partial order. This is exactly what we do in the sequel when strengthening Theorems 1 and 2; e.g., see

Theorem 4. We have chosen the current presentation as it provides considerable expositional simplicity.
41It suffices to check these properties issue by issue. When there is no mutually acceptable alternative

in X, the outside option oX is the only efficient and individually rational option. When the set of mutually

acceptable alternatives in X is nonempty, any alternative in this set is efficient and individually rational.

Finally, any alternative in Y \ {oY } is always efficient and individually rational. These observations

together imply that the bundles selected by an adjacent rule for the upper and lower halves of the matrix

are always efficient and individually rational.
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rules. We will later identify a weaker version that will be both sufficient and necessary

for obtaining a strategy-proof, efficient, and individually rational mediation rule.

Definition 5. The extension map Λ satisfies logrolling (quid pro quo) if there

exists a function t : X → Y such that for all i, θi ∈ Θi, Ri ∈ Λ(θi) and all x, x′ ∈ A(θi)

with x θi x
′, we have

Ä
x′, t(x′)

ä
Ri

Ä
x, t(x)

ä
.

Logrolling (quid pro quo) allows “trading” of alternatives. It requires two conditions.

First, for any two acceptable alternatives x, x′ in X where x is ranked above x′ for type θi,

there must exist two alternatives y, y′ in Y , where y′ is ranked above y, such that (x′, y′)

is ranked at least as high as (x, y) at all admissible orderings (over bundles) Ri ∈ Λ(θi).

Second, types must be “consistent.” Namely, order-reversing mapping, t, is independent

of types. Logrolling implies that the attractiveness of the alternatives in Y is sufficiently

dispersed so that the negotiators are willing to trade any acceptable alternative in issue X

with any other acceptable but less desirable alternative in X. This notion can be viewed

as the nontransferable utility analogue of the possibility of compensation assumption in a

transferable utility model; see, e.g., Thomson (2016). Logrolling imposes a certain type of

substitutability between the two issues. As such, it rules out lexicographic preferences. In

fact, many standard utility functions are compatible with this condition, as illustrated in

Example 3 for quasi-linear utility and further elaborated in the Supplementary Appendix.

Note that logrolling is a well-defined concept only if the number of alternatives in issue

Y is no less than the number of alternatives in issue X.

Example 2 (logrolling): Suppose that each issue consists of three alternatives, i.e.,

m = 3. Since the alternatives in issues X and Y are equal in number, there is a unique

one-to-one function t, where t(xk) = y4−k for k = 1, 2, 3, which satisfies the requirements

of Definition 5. Logrolling implies that the type θx31 of negotiator 1 who deems all three

alternatives in issue X acceptable, i.e., x1 θ
x3
1 x2 θ

x3
1 x3 θ

x3
1 oX, will rank (x3, y1) at least

as high as the bundle (x2, y2) and rank (x2, y2) at least as high as the bundle (x1, y3) for

all admissible orderings R1 ∈ Λ(θx31 ). The consistency of the mapping t over the types

implies, for example, that type θx21 of negotiator 1 who deems only x1 and x2 acceptable,

i.e., x1 θ
x2
1 x2 θ

x2
1 oX θx21 x3, will rank (x2, y2) at least as high as the bundle (x1, y3).

Logrolling imposes no restriction on admissible orderings R1 ∈ Λ(θx21 ) regarding how

they rank the bundle (x3, y1) relative to the bundles (x2, y2) and (x1, y3).

Although our ordinal approach does not make any explicit assumptions about (or seek

to elicit) negotiators’ cardinal preferences, this certainly does not preclude the possibility

that the negotiators are inherently endowed with such preferences. In that regard, it

is interesting to ask what kind of underlying preferences would be compatible with the

logrolling condition. The next example offers an illustration when the negotiators’ utility

functions are quasi-linear.
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Example 3 (logrolling under quasi-linear utility): Suppose the negotiators are

in a dispute over dividing 10 units of good x and 6 units of good y. It is commonly

known that negotiator i’s utility, for an acceptable amount of good x and y, is of the

form Ui(x, y) = xαi + y where αi ∈ (0, 3
5
] for i = 1, 2, but the exact value of αi is not

necessarily publicly known.42 There are five possible ways of dividing each good such that

a negotiator’s share of good x is an alternative from the set X = {1, 3, 5, 7, 9} and that

of good y is an alternative from the set Y = {1, 2, 3, 4, 5}. Her least acceptable amount

of good x is each negotiator’s private information. Then the set of logrolling bundles is

B = {(1, 5), (3, 4), (5, 3), (7, 2), (9, 1)}, i.e., those bundles (x, t(x)) where t(x) = 11−x
2

, and

the logrolling condition is satisfied, as can be easily verified.

Remark 1: Example 3 raises a natural question as to what conditions negotiators’

underlying utility functions generally need to satisfy to ascertain that the logrolling con-

dition is satisfied. In the Supplementary Appendix, where we consider a continuous

analogue of our discrete model, we provide sufficiency conditions on negotiators’ underly-

ing preferences that ensure compatibility with the logrolling condition. Intuitively, these

sufficiency conditions require the marginal rate of substitution between the two issues

be no greater than the slope of the t function which governs the set of logrolling bun-

dles. In other words, there is a certain degree of freedom in terms of choosing the set

of logrolling bundles and the negotiators’ utility functions. Specifically, for any given

pair of differentiable and increasing utility functions, there is a corresponding set of de-

creasing functions, i.e., a set of all possible sets of logrolling bundles, that guarantees

compatibility with the logrolling condition. Alternatively, for any given set of bundles

that lie on a strictly decreasing curve, there is a corresponding set of differentiable and

increasing utility functions that guarantees compatibility with the logrolling condition.

See the Supplementary Appendix for formal statements.

We are now ready to provide a full characterization result.

Theorem 2. Suppose that the regular extension map Λ satisfies logrolling (quid pro quo).

The mediation rule f is strategy-proof, efficient, and individually rational if and only if

it is an adjacent rule, i.e., f = fB, for some strict precedence order B on B.

Theorem 2 gives us a complete characterization of the set of strategy-proof, efficient,

and individually rational mediation rules under logrolling. Any mediation rule satisfying

the three properties must be an adjacent rule associated with some precedence order, and

conversely, any adjacent rule possesses the three properties, i.e., any strict binary relation

over B generates a strategy-proof, efficient, and individually rational mediation rule. In

the next section we focus on the structure of the class of adjacent rules, provide simple

42When negotiator i gets bundle (x, y), negotiator j gets (10 − x, 6 − y) which gives her a utility of

Uj(10− x, 6− y) = (10− x)αj + 6− y.
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and intuitive interpretations of these rules, and identify interesting special members of

this class of rules.

Sketch of the proof of Theorem 2: We provide only a sketch of the argument

that an adjacent rule is strategy-proof, since all the other claims in Theorem 2 have

already been established. The logrolling (quid pro quo) condition implies that the set of

logrolling bundles forms a totally ordered set, or a simple distributive lattice, with respect

to either negotiator’s weak preferences. In particular, the bundle at the top corner of

the diagonal, i.e., f1,1 = (x1, ym) is negotiator 1’s least-preferred (negotiator 2’s most-

preferred) logrolling bundle and the bundle at the bottom corner of the diagonal, i.e.,

fm,m = (xm, y1) is negotiator 1’s most-preferred (negotiator 2’s least-preferred) logrolling

bundle whenever they are acceptable. The adjacency property in part (iii) of Theorem 1

implies that whenever a bundle b ∈ B lies above another bundle b′ ∈ B along the main

diagonal, i.e., b contains a lower-indexed alternative from X, it can never be the case that

b′ lies above b along any diagonal throughout the entire matrix. In other words, bundle b

always lies to the left of bundle b′ on any row that contains both bundles and lies above

b′ on any column that contains both bundles. Consider the outcome f`,j = f(θx`1 , θ
xj
2 )

where ` ≥ j. Clearly, f`,j is a logrolling bundle. Consider, without loss of generality,

negotiator 1. Suppose she were to report a less accepting type θx
′
` with `′ < `. If

`′ ≥ j, then the new outcome f`′,j is also a logrolling bundle. Moreover, by the previous

implication of adjacency, bundle f`′,j either coincides with or lies above bundle f`,j on

the main diagonal, i.e., negotiator 1 is either as well off or worse off. If ` < j, then the

new outcome f`′,j chooses the outside option in X and negotiator 1 is worse off by the

deal-breakers property.

Suppose she were instead to report a more accepting type θx
′
` with `′ > `. Clearly,

the new outcome f`′,j is also a logrolling bundle. Recall that the adjacency property

implies that the bundles on the main diagonal spread in the southwestern direction into

the lower half of the matrix. This means that entry f`,j contains either bundle f`,` or a

bundle above it on the main diagonal, i.e., no bundle on the main diagonal ever moves

up to a higher row. Similarly, bundles below f`,` on the main diagonal also spread in the

southwestern direction. This implies that any bundle below entry f`,j on column j either

contains the same bundle as f`,j or a bundle that lies below f`,` on the main diagonal.

But bundles below f`,` on the main diagonal contain unacceptable alternatives from issue

X. Hence, reporting θx
′
` makes her either as well off or worse off by the deal-breakers

property.

Finally, if we started off from an entry f`,j with ` < j, f`,j would choose a bundle

with the outside option in X. If negotiator 1 were to report a more accepting type θx`′

with `′ > `, then her outcome would either remain unchanged (when j > `′), or make her

worse off by giving her an unacceptable alternative from X.
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A Visual Characterization of the Class of Adjacent Rules

To provide further insight into the adjacent rules that are characterized in Theorem

2, and in particular, to gain a better understanding of the implications of part (iii) of

Theorem 1, we offer a geometric analysis of these rules. The geometric analysis will lend

itself to intuitive interpretations of these rules for practical use. In this subsection we

fix a mediation rule f = [f`,j](`,j)∈M2 that satisfies parts (i) and (ii) of Theorem 1. For

any k ∈ M , let bk denote the logrolling bundle (xk, ym−k+1) ∈ B. We first introduce

a couple of definitions to represent different rectangular and triangular regions of the

matrix induced by rule f . In the following two definitions we slightly abuse notation and

terminology in order to keep track of the entries contained in a rectangular/triangular

region, e.g., we usef`,j to in fact refer to entry (`, j) of the matrix rather than the specific

bundle that rule f assigns to that entry.

Definition 6. Consider the entry fk,k = bk and an entry that lies (weakly) to its south-

west, f`,j with j ≤ k ≤ `. The rectangle induced by bk and f`,j, denoted by <bk`,j, is the

set of all entries in the rectangular region of the matrix (inclusively) enveloped between

rows k and ` and columns k and j. Namely, <bk`,j ≡
⋃

j≤s≤k
k≤t≤`

{ft,s}.

Definition 7. The triangle induced by an entry f`,j, with j ≤ `, denoted by 4`,j,

is the set of all entries in the triangular region of the matrix that is (inclusively) en-

veloped by the entry f`,j, row `, column j, and the main diagonal. Namely, 4`,j ≡⋃
j≤t≤`
{ft,j, ft,j+1, ..., ft,t}.

Note that a rectangle/triangle is merely a collection of entries of the matrix induced

by rule f , i.e., sets of pairs of indexes. Note also that an entry on the main diagonal

is a special triangle (and also a special rectangle) that consists of a singleton entry.

Furthermore, the entire main diagonal of the matrix and all the entries to its southwest

constitute the largest possible triangle 4m,1. Given a triangle 4`,j, its entries that lie

on the main diagonal are said to be on the hypotenuse of 4`,j, and the set of these

entries are denoted by B`j ≡ {fj,j, ..., f`,`} = {bj, ..., b`}. A partition of the lower half of

the matrix is called a rectangular (triangular) partition if and only if it is the union of

disjoint rectangles (triangles).43 Given a set B ⊆ B and a strict precedence order B on

B, let max
B
B ≡

¶
b ∈ B | b B a for all a ∈ B\{b}

©
denote the unique bundle in B that

has the highest precedence with respect to B.

43Note that a rectangular partition consists of m disjoint rectangles. For example, {<bkk,1}mk=1 and

{<bkm,k}mk=1 are two obvious rectangular partitions of4m,1. These two partitioning correspond respectively

to what we will later refer to as the negotiator 1- and negotiator 2-optimal rules.
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Theorem 3 (Visual Characterization). Consider a mediation rule f satisfying parts

(i) and (ii) of Theorem 1. The following statements are equivalent:

(1) f satisfies part (iii) of Theorem 1.

(2) 4m,1 has a rectangular partition such that f assigns a unique bundle to each rect-

angle in this partition.44

(3) There exists a precedence order B on B such that f`,j = max
B`j

B.

Part (2) of Theorem 3 states that an adjacent rule f can be represented as the union

of m disjoint rectangular regions. Each rectangle has a distinct corner entry on the main

diagonal that contains the logrolling bundle that fills up the entire rectangle. Proce-

durally, these rectangles are obtained as follows. Given the precedence order, let the

highest-precedence bundle on the hypotenuse of the largest triangle 4m,1 fill up all the

entries that are located to its southwest. This creates the first and largest rectangle <,

and leads to a triangular partition of 4m,1\<. Next, pick any triangle from this partition

and let the highest-precedence bundle on the hypotenuse of this triangle fill up all the

entries that are located to its southwest. This leads to a second rectangle <′, as well as a

unique triangular partition of 4m,1\{<,<′}. The process can be iterated in this fashion

until the entire triangle 4m,1 is partitioned into m disjoint rectangles in m steps. Con-

versely, any such geometric set, namely any rectangular partition of 4m,1, can be used

to construct a precedence order and a corresponding adjacent rule. Figure 2 provides an

illustration of one such partitioning.

b1

b2

b3

b4

b5

b6

b7

b8

b9

Figure 2: An example of a rectangular partitioning with 9 alternatives

Part (3) of Theorem 3 gives a shortcut formula for calculating the outcome of an

adjacent rule f . Any entry f`,j with ` ≥ j in the lower half of the matrix must always

contain the logrolling bundle with the highest precedence among the bundles that are on

the hypotenuse of the triangle generated by the entry f`,j, i.e., 4`,j. This eliminates the

44More formally, for any < in the partition of 4m,1 and any pair a, b ∈ <, a = b; but for any distinct

pair <,<′ in the partition of 4m,1, a ∈ < and b ∈ <′ implies a 6= b.
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need to calculate the immediately adjacent bundles of that entry as required by part (iii)

of Theorem 1. Part (3) implies that the left-bottom corner entry fm,1 of the matrix is

always assigned the highest-precedence logrolling bundle, which is also the bundle that

fills up the rectangle obtained at the first step of the partitioning procedure described

above.

Theorem 3 can be used to obtain an alternative interpretation of an adjacent rule

reminiscent of how a divide-and-choose type of rule from fair division works. In particular,

an adjacent rule can be thought to operate as a “shortlisting rule”: One negotiator offers

a short list of bundles to the other negotiator and the other negotiator chooses her favorite

bundle from this list. To see this, observe that when negotiator 1 reports her type as

θx` , the rule must pick a bundle on row `. Equivalently, this can be viewed as negotiator

1 forming a short list consisting of all the bundles on row `. Suppose that the type of

negotiator 2 is θxj . When faced with the list of bundles negotiator 1 offers her, she indeed

picks f`,j since it is in fact her favorite bundle on row ` by strategy-proofness. If the roles

of the two negotiators in the procedure were reversed, the outcome would still be the

same by a symmetric argument.45 As an example, consider the adjacent rule depicted in

Figure 2. Suppose negotiator 1 is of type x3. Then we can think of her as proposing the

short list {b2, b3, (oX, y)} to the other negotiator. The corresponding short lists for her

types θx5 and θx7 are respectively {b2, b4, b5, (oX, y)} and {b2, b6, b7, (oX, y)}.
Under this interpretation, an adjacent rule specifies the set of shortlisted bundles a

negotiator can offer to the other party for each possible type she reports. When the

proposing negotiator reports a more accepting type, then she can add new bundles to her

previous list or remove some bundles from this list. However, Theorem 3 implies that a

previously removed bundle can never be added back on to the list for a more accepting

type. In our example, negotiator 1 adds bundles b4 and b5 to her list and removes b3 when

switching from θx3 to θx5 and adds b6 and b7 and removes b4 and b5 when switching from

θx5 to θx7 . Note that once bundles b3, b4 or b5 are removed, they are never added back

in. Conversely, any collection of sets of shortlisted bundles (one set for each possible type

of a negotiator) respecting this requirement can be shown to correspond to an adjacent

rule.

Special members of the adjacent rules family

Three notable members of the adjacent rules family are worth pointing out. A

negotiator-optimal rule represents a situation of extreme partiality to one side of

the dispute and is constructed by using the strict counterpart of the preference of one

negotiator over the logrolling bundles, B, as the precedence order. For example, when

45In the context of fair division, however, the outcome of divide-and-choose may be order dependent.

Divide-and-choose also violates strategy-proofness.
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there are five alternatives in each issue, the negotiator 1-optimal rule takes

B1: (x5, y1) B
1 (x4, y2) B

1 (x3, y3) B
1 (x2, y4) B

1 (x1, y5)

whereas the negotiator 2-optimal rule takes

B2: (x1, y5) B
2 (x2, y4) B

2 (x3, y3) B
2 (x4, y2) B

2 (x5, y1).

Additionally, in case of disagreement, i.e., in case there is no mutually acceptable alter-

native in issue X, the corresponding designated bundle includes the favored negotiator’s

most-preferred alternative in issue Y . The two dual rules are shown below:

θx5
1

θx4
1

θx3
1

θx2
1

θx1
1

θx1
2 θx2

2 θx3
2 θx4

2 θx5
2

(oX , y1) (oX , y1) (oX , y1) (oX , y1)

(oX , y1) (oX , y1) (oX , y1)

(oX , y1) (oX , y1)

(oX , y1)

(x1, y5)

(x2, y4)(x2, y4)

(x3, y3)(x3, y3)(x3, y3)
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Figure 3-a: Negotiator 1-optimal rule
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Figure 3-b: Negotiator 2-optimal rule

A negotiator-optimal rule always chooses the corresponding negotiator’s most-preferred

bundle among the mutually acceptable logrolling bundles. The analogous shortlisting rule

is rather simple: the favored negotiator’s short list includes only two bundles, which are

her favorite logrolling bundle and the designated disagreement outcome.46 Clearly, these

two polar members of the adjacent rules family are highly undesirable in practice. Nev-

ertheless, they hint at the possibility of the mediator having the power to tilt the balance

in a dispute despite using a rule that meets our desiderata. As discussed earlier, such

a possibility has been acknowledged in the practical mediation literature, in which var-

ious field studies report and caution against biased treatment. Fortunately, there is a

remarkable member of the adjacent rules family that treats negotiators symmetrically.

Given that the negotiators’ preferences over the logrolling bundles are diametrically

opposed, impartiality would require the mediator to focus on a central element of the set of

logrolling bundles. It is then intuitive for him to recommend a median logrolling bundle,

i.e., bundle (xn, yn) where n is the index of a median alternative,47 when it is mutually

acceptable, or seek a bundle as close to it as possible when it is not. Under the family of

adjacent rules, this is achieved simply by assigning the highest precedence to a median

46Alternatively, the nonfavored negotiator’s short list includes all logrolling bundles acceptable to her

together with the designated disagreement outcome.
47If m is odd, there is a unique median alternative in each issue. If m is even, there are two median

alternatives in each issue, in which case we assume that the mediator picks either of them.
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logrolling bundle, and the next precedence to those bundles that are closest to the chosen

median, and so on, and lowest precedence to the extremal logrolling bundles. Based

on similar logic, when there is no mutually acceptable alternative in X, the designated

bundle chosen by an impartial mediator should naturally include a median alternative in

Y . This motivates the following type of rule, which we call a constrained shortlisting

(CS) rule.

Definition 8. Let n ∈ {n, n} be the index of a median alternative, where n = dm+1
2
e and

n = bm+1
2
c. A rule is a constrained shortlisting rule, denoted fCS = [f`,j](`,j)∈M2, if it is

an adjacent rule that is associated with a precedence order B, where bn B bn−1 B . . . B b1

and bn B bn+1 B . . . B bm, and fCS`,j = (oX, yn) whenever ` < j.

Note that there is a unique constrained shortlisting rule when the number of alter-

natives is odd. When the number of alternatives is even, however, a constrained short-

listing rule prescribes one of four possible types of outcomes.48 Figure 4 illustrates the

constrained shortlisting rule for the case of five alternatives.

θx51

θx41

θx31

θx21

θx11

θx12 θx22 θx32 θx42 θx52

(oX, y3) (oX, y3) (oX, y3) (oX, y3)

(oX, y3) (oX, y3) (oX, y3)

(oX, y3) (oX, y3)

(oX, y3)

(x1, y5)

(x2, y4)(x2, y4)

(x3, y3)(x3, y3)(x3, y3)

(x3, y3)(x3, y3)(x3, y3)

(x3, y3)(x3, y3)(x3, y3)

(x4, y2)

(x4, y2) (x5, y1)

Figure 4: Constrained shortlisting rule

When the number of alternatives is odd, the CS rule is a symmetric member of the

adjacent rules family.49 In the lower half of the matrix, it acts as a negotiator-optimal rule

whenever the median alternative in issue X is not mutually acceptable and recommends

the median logrolling bundle whenever the set of mutually acceptable alternatives includes

the median alternative. In other words, when both negotiators find at least half of the

alternatives in X acceptable, the rule chooses the median logrolling bundle. On the

other hand, when one negotiator finds at least half of the alternatives acceptable while

the other finds less than half of the alternatives acceptable, the rule chooses the less

accepting negotiator’s favorite (acceptable) logrolling bundle.

48In this case, the rule depends on whether bn or bn has the highest precedence order and whether yn

or yn is included in the designated disagreement bundle.
49When the number of alternatives is even, no adjacent rule is fully symmetric.
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Assuming an odd number of alternatives,50 the CS rule can intuitively be imple-

mented as a shortlisting rule in the following way. The mediator solicits from one of

the negotiators her favorite logrolling bundle, which effectively reveals the negotiator’s

type. Depending on the bundle the negotiator provides, the mediator proposes to the

other negotiator one of two types of short lists to choose from. If the solicited negotia-

tor finds less than half of the alternatives acceptable, then the short list includes only

the designated disagreement bundle in addition to her favorite logrolling bundle. If the

solicited negotiator finds at least half of the alternatives acceptable, then the short list

includes the designated disagreement bundle, the median logrolling bundle, her favorite

logrolling bundle, and all the logrolling bundles in between the latter two. It is clearly

in the best interests of the opposite negotiator to choose truthfully from the proposed

short list. Since CS is strategy-proof, the solicited negotiator also truthfully reveals her

favorite logrolling bundle. It again does not matter for the outcome which negotiator the

mediator approaches first.

In discrete resource allocation problems where agents are endowed with ordinal prefer-

ence rankings, fairness properties (together with efficiency) have often proved difficult to

attain in the absence of monetary transfers or a randomization device. It may neverthe-

less be worthwhile to investigate whether it is possible for a member of the adjacent rules

family to achieve alternative fairness requirements beyond symmetry. We next formulate

one such ordinal fairness notion as a normative requirement for our context.

Given the negotiators’ fixed preferences over alternatives (not including the outside

option), let ri(z) ∈M denote negotiator i’s ranking of an acceptable alternative z ∈ Z ∈
{X, Y }. We normalize the ranking of an outside option to be zero as we will restrict our

attention to the family of adjacent rules.51 Given an adjacent rule f = [f`,j](`,j)∈M2 , let

f`,j = (fX`j , f
Y
`j ) ∈ X × Y denote the bundle it proposes when the negotiators’ types are

θx`1 and θ
xj
2 . The rank variance of the bundle f`,j is defined as52

var(f`,j) ≡
∑
i∈I

Ä
ri(f

X
`j )
ä2

+
Ä
ri(f

Y
`j )
ä2
.

Then, the rank variance of a rule f is the total sum of the rank variances of all possible

outcomes of f and defined as

V ar(f) ≡
m∑
`=1

m∑
j=1

var(f`,j).

50The interpretation a CS rule is analogous for the case of even number of alternatives.
51This normalization is without loss of generality for our analysis because all adjacent rules recommend

the outside option only for the upper half of the matrix, in which case any adjacent rule selects the same

outcome for issue X, i.e., the outside option oX .
52The following formulation of rank variance assigns equal weights to both issues. One may also

consider assigning different weights to different issues. Theorem 4 still holds in that case due to the

symmetric structure of the logrolling bundles.
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Intuitively, the larger the differences between the two negotiators’ rankings of the

alternatives in a given bundle, the higher the rank variance of that bundle. For example,

while never recommended by an adjacent rule, the bundles (x1, y1) and (xm, ym) have the

highest rank variance. Despite making one negotiator as well off as possible, they make

the opposite negotiator as worse off as possible. In this sense, the larger the rank variance

of a mediation rule, the more skewed it is toward extremal bundles. The next result shows

that rank variance is minimized only via a CS rule within the class of adjacent rules.

Theorem 4. A mediation rule minimizes rank variance within the class of strategy-proof,

efficient, and individually rational rules if and only if it is a constrained shortlisting rule.

The characterization of a CS rule in Theorem 4 essentially follows from the fact that

the median logrolling bundle has the smallest rank variance among all logrolling bun-

dles. Furthermore, the rank variance of a logrolling bundle grows as it gets further away

from the median, e.g., the negotiator-optimal bundles have the highest rank variance.

Put differently, the median bundle can be viewed as the “center of gravity” of the set

of logrolling bundles. A CS rule assigns the highest precedence to the median logrolling

bundle (and next precedence to those that are closest to it and so on) and thereby ensures

that this bundle is the recommended outcome whenever it is mutually acceptable. For

a continuous analogue of our model where the two issues represent goods x and y to be

divided and the possible ways of dividing the two goods are symmetrically distributed

where the median alternative corresponds to equal-split (as in Example 3), it is plausi-

ble to argue that the median logrolling bundle automatically achieves a strong form of

fairness. Indeed, regardless of the negotiators’ preferences, the median logrolling bundle

corresponds to equal division of the two goods and thus always guarantees envy-freeness.

5. Necessary and Sufficient Conditions for Strategy-Proofness

Theorem 1 states that a strategy-proof, efficient, and individually rational rule must

be an adjacent rule, and therefore must always choose a logrolling bundle when a mutu-

ally acceptable solution exists. The logrolling (quid pro quo) restriction on preferences

requires that negotiators are able to compare all logrolling bundles unambiguously in

a certain way and guarantees that any adjacent rule is strategy-proof. While a suffi-

cient condition, it is not necessary to obtain a strategy-proof mechanism. For example,

if only negotiator 1’s preferences satisfy the logrolling property but negotiator 2 cannot

unambiguously compare all logrolling bundles, then the negotiator 1-optimal rule is still

strategy-proof. Indeed, under the negotiator 1-optimal rule, negotiator 2 can only choose

between getting either a logrolling bundle or the disagreement outcome. As another ex-

ample, consider the CS rule with an odd number of alternatives. By similar reasoning, the

CS rule remains strategy-proof so long as negotiator 1’s preferences satisfy the logrolling
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property for the first half of the alternatives, i.e., alternatives x1 through the median

alternative xn, and negotiator 2’s preferences satisfy the logrolling property for the last

half of the alternatives, i.e., alternatives xm through the median alternative xn.

In this section we ask how far we can weaken the logrolling property, and to this end,

provide two types of equivalent conditions on preferences either of which is necessary and

sufficient for strategy-proofness. The first condition, called weak logrolling, is a recursive

and algorithmic definition on the set of logrolling bundles, whereas the second condition

is based on an order-theoretic semilattice structure that the set of logrolling bundles must

satisfy. Note that, by Theorem 1, any rule that survives strategy-proofness under these

weaker conditions must still be a member of the class of adjacent rules.

The first condition is essentially an iterative process that requires us to consider a

series of pairings of logrolling bundles, where it should always be possible for at least

one negotiator to unambiguously compare the bundles in each pair. Before formally

stating this condition, we find it useful to describe this process using an analogy of

an “elimination tournament” among logrolling bundles. As an example, consider the

mediation problem with three alternatives in each issue. Imagine that the tournament

starts with all logrolling bundles ordered from b1 to b3 (see the left side of Figure 5.) In the

first round of the tournament, each logrolling bundle matches up with all of its neighbors,

i.e., both b1 and b3 match with b2. In the matchup between bk and bk+1, the “winner” is

bk+1 if negotiator 1 unambiguously ranks bk+1 at least as high as bk whenever two of these

bundles are acceptable to her. Similarly, the winner is bk if negotiator 2 unambiguously

ranks bk at least as high as bk+1 whenever two of these bundles are acceptable to her.

(This is formalized by the notion of concatenation below.) When both negotiators are

able to compare these two bundles, then the winner can be any of these two bundles, but

only one of them will proceed to next round. In the example below, we suppose that only

negotiator 2 unambiguously compares b1 with b2, and so b1 “eliminates” b2 and moves on

to the second round, whereas b2 loses to b3 because only negotiator 1 can unambiguously

compare b3 and b2.
53 Then, in the second round (see the placements on the second

diagonal), b1 and b3 will match up. Once again, the winner will be b3 (respectively b1) if

negotiator 1 (respectively 2) can unambiguously rank b3 over b1 (respectively b1 over b3)

whenever they are acceptable. Suppose both bundles are unambiguously ranked by both

negotiators in the desired way. Then either bundle can be a winner of this round. In the

illustration below, we have arbitrarily chosen b3 between the two to proceed to the final

round (where it wins the tournament).

53More precisely, 2 unambiguously ranks b1 over b2 and 1 unambiguously ranks b3 over b2.
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b1 b2 b3

b1 b3

b3

Round 1:

Round 2:

Final: b3 b3 b3

b1 b2

b1

Figure 5: An example for the elimination tournament and
the matrix representation for the corresponding mediation rule

The main idea of our necessity result is that it is possible to obtain a strategy-proof

mechanism for a given preference domain if and only if one can construct a tournament

of the above form among the set of logrolling bundles where there is always a winner

of each match of each round. In particular, each round of the tournament represents

a corresponding diagonal of the matrix of the mediation rule to be constructed. The

winners of each round fill up the corresponding entries of the next diagonal and the

process repeats until only one logrolling bundle remains. For example, for the tournament

described above, the order of the logrolling bundles in the first round gives the placement

order of these bundles (from the top corner to the bottom corner) along the first diagonal,

the order in the second round gives the placement order along the second diagonal, and

the last winner, b3, fills up the bottom left entry of this matrix (which is the last diagonal).

The constructed rule is the adjacent rule fB with B: b3, b1, b2 where the winner of a

match gains precedence over the loser. This rule can be easily verified to be strategy-proof

under the preference restrictions given in our example. The following series of definitions

formalizes these insights.

Definition 9. The extension map Λ is consistent if it is regular and if for all i ∈ N ,

θi ∈ Θi, and b = (x, y), b′ = (x′, y′) ∈ X × Y with x, x′ ∈ A(θi) we have

1.
ï
b Ii b

′ for all Ri ∈ Λ(θi)
ò

=⇒
ï
b = b′

ò
, and

2.
ï
b Ri b

′ for all Ri ∈ Λ(θi)
ò

=⇒
ï
b Ri b

′ for all Ri ∈ Λ(θ′i) and θ′i ∈ Θi

ò
.54

The first condition implies that if negotiators are indifferent between two bundles

at all admissible preferences, then these two bundles must be the same. The second

condition implies that if some types of a negotiator can unambiguously rank two accept-

able bundles, then all types of that negotiator who deem these two bundles acceptable

should unambiguously and similarly rank them. Recalling our tournament analogy, which

logrolling bundle will be matched with which bundle at what round is formalized by the

following adjacency requirement.

Definition 10. Let B be a nonempty subset of B and the bundles b = (x`, ym−`+1), b
′ =

(xj, ym−j+1) are in B. Then b′ is adjacent to bundle b in B if there exists no bundle

54Let Ii denote the indifference part of Ri, i.e., b Ii b
′ if and only if b Ri b

′ and b′ Ri b.
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(xk, ym−k+1) ∈ B with ` < k < j (or j < k < `) whenever ` < j (or j < `). We call such

two bundles adjacent in B and denote b′ ∈ B(b).

Note that adjacency is symmetric, that is, if bundle b is adjacent to b′ in B, then

b′ is also adjacent to b in B. We formalize the requirement that there exists a winner

in every match at any round of the tournament by iterating the following completeness

requirement.

Definition 11. A binary relation B on B is complete with respect to adjacency

on B ⊆ B if for any two distinct and adjacent bundles b, b′ ∈ B, we have either b B b′

or b′ B b.

Let B be a binary relation over the set of logrolling bundles. Set B0
B = B and

recursively define Bk
B = {b ∈ Bk−1

B | b B b′ for some b′ ∈ Bk−1
B (b)} for k = 1, 2, .... If the

binary relation B is antisymmetric, then the number of elements in each Bk
B is at most

m − k for k < m and 1 for all k ≥ m. We next formalize the requirement that there

exists a winner of each match of each round by the following connectedness requirement.

Definition 12. The binary relation B on B is called connected if it is complete with

respect to adjacency on all Bk
B, k = 0, 1, ....

Finally, the existence of at least one such elimination tournament among the set of

logrolling bundles, in which there always exists a winner of all matches at all rounds, is

guaranteed by the following requirements.

Definition 13. The extension map Λ admits a binary relation B on B that concate-

nates negotiators’ preferences if for any two distinct logrolling bundles b = (x`, ym−`+1), b
′ =

(xj, ym−j+1) ∈ B, b B b′ implies

1. b R1 b
′ for all R1 ∈ Λ(θ1) and all θ1 ∈ Θ1 with x`, xj ∈ A(θ1) whenever j < `,

2. b R2 b
′ for all R2 ∈ Λ(θ2) and all θ2 ∈ Θ2 with x`, xj ∈ A(θ2) whenever j > `.

Definition 14. The extension map Λ satisfies weak logrolling if it admits a transi-

tive, antisymmetric, and connected binary relation B over the set of logrolling bundles

that concatenates negotiators preferences. In that instance we call B admissible with

respect to Λ.

We are now ready to introduce our first necessary and sufficient condition.

Theorem 5. Suppose that Λ is consistent. The mediation rule f is strategy-proof, effi-

cient, and individually rational if and only if Λ satisfies weak logrolling and f = fB for

some binary relation B that is admissible with respect to Λ.
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Checking whether an extension map satisfies the weak logrolling condition essentially

requires a recursive algorithmic procedure. We next provide a more concise necessary

and sufficient condition for a possibility result using order theory.

Recall that the full logrolling property implies that the set of logrolling bundles forms

a simple lattice with respect to either negotiator’s preferences. Our next result shows

that while a lattice structure is sufficient, one needs only the set of logrolling bundles to

form a type of semilattice to guarantee the existence of a strategy-proof rule. Specifically,

a join-semilattice is a partially ordered set that has a join (a least upper bound) for

any nonempty finite subset.

The partial order over B that we will use in our semilattice construction is based

on a reflexive completion of the above defined binary relation on B that concatenates

negotiators’ preferences. We say that a partial order D on B reflexively concatenates

negotiators’ preferences if it concatenates negotiators’ preferences and is reflexive, namely

b D b for any b ∈ B.

We say that a subset of the set of logrolling bundles is linked if it is the hypotenuse of

some triangle. Put differently, there are no “gaps” in a linked set; it consists of logrolling

bundles that are adjacent to each other.

Definition 16. A set B ⊂ B is linked if B = {(xk, ym−k+1) ∈ B|j ≤ k ≤ `} ≡ B`j for

some `, j with 1 ≤ j ≤ `.55

The next result shows that a strategy-proof, efficient, and individually rational medi-

ation rule induces a join-semilattice structure on the set of logrolling bundles as well as

on any of its linked subsets. Conversely, if all linked subsets of B form join-semilattices,

then a mediation rule satisfying the three properties always exists.

Theorem 6. Given the consistent extension map Λ, there exists a mediation rule f

satisfying strategy-proofness, efficiency, and individual rationality if and only if Λ admits

a partial order D on B that reflexively concatenates negotiators’ preferences such that for

any linked set B ⊂ B, (B,D) is a join-semilattice.

Figure 6 illustrates a join-semilattice that corresponds to the adjacent rule in Figure

2. This semilattice essentially delineates the full set of restrictions on the extension map

Λ that is necessary and sufficient for the particular adjacent rule to be strategy-proof.

It is worth observing that in addition to B, all of its linked subsets, e.g., B13,B48, can

be seen to form a join-semilattice when equipped with the partial order D) whereas a

nonlinked set, e.g. B45 ∪B78, does not necessarily form a join-semilattice.

55By this definition, a linked set is nonempty. Note that set B itself is linked and so is any singleton

subset of B.
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Figure 6: The join-semilattice structure that is essential for the strategy-proofness
of the adjacent rule in Figure 2

6. Mediation with Continuum of Alternatives

Our main model assumes a discrete set of alternatives for both issues. In this section

we extend the characterization of the class of adjacent rules to a continuous analogue of

our model.56

Suppose now that the issues X and Y are two closed and convex intervals of the real

line. The outside options, oX and oY , may or may not be the elements of these sets. We

assume, without loss of generality, that X = Y = [0, 1], with the interpretation that the

negotiators aim to divide a unit surplus in each issue. To keep the notation consistent

with the previous section, let a bundle b = (x, y) indicate what negotiator 2 gets in the two

issues, i.e., negotiator 2 gets x ∈ X and y ∈ Y , and thus, negotiator 1 gets the remaining

1− x and 1− y in issues X and Y . Agents having diametrically opposed preferences on

each issue means that for any issue Z ∈ {X, Y } and two alternatives z, z′ ∈ Z, negotiator

1 (respectively 2) prefers z to z′ whenever z < z′ (respectively z > z′). The value/ranking

of the outside option oX in issue X is each negotiator’s private information. However,

the value/ranking of the outside option oY in issue Y is common knowledge, and both

negotiators prefer all y ∈ Y to oY .

For any ` ∈ [0, 1], type ` of negotiator 1 (respectively 2), denoted by θ`1 (respectively

θ`2), prefers the outside option oX to all alternatives k ∈ [0, 1] with ` < k (respectively

` > k).57 Parallel to the discrete case, we denote the mediation rule f = [f`,j](`,j)∈[0,1]2

where f`,j = f(θ`1, θ
j
2) for all 0 ≤ `, j ≤ 1.58 The negotiators have no mutually acceptable

56Matsuo (1989) shows that it is possible to overcome the impossibility in the bilateral exchange

model of Myerson and Satterthwaite (1983) by restricting to a finite number of types. This section also

shows that the possibility results in our context are not driven by the finiteness of the number of types

in our main model.
57In other words, 1− ` (respectively `) is the least acceptable amount of X for type θ`1 (respectively

θ`2). Therefore, all k with ` ≥ k (respectively ` ≤ k) are deemed acceptable by type θ`1 of negotiator 1

(respectively type θ`2 of negotiator 2).
58We assume, without loss of generality, that each negotiator has at least one acceptable alternative.

Therefore, there is no type profile where a negotiator deems all alternatives unacceptable.
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alternative in issue X at type profile (θ`1, θ
j
2) when ` < j. The set of mutually acceptable

alternatives is A(θ`1, θ
j
2) = [j, `] whenever ` ≥ j. We use Θi as the set of all types of

negotiator i and θi ∈ Θi as the generic element whenever there is no need to specify the

type’s least acceptable alternative. The monotonicity and the deal-breakers assumptions

of the regularity condition in the previous sections directly apply here. The same is true

for the definitions of strategy-proofness, efficiency, and individual rationality. We need a

slight modification in the logrolling property for the continuous model.

Definition 19. The extension map Λ satisfies logrolling if there exists a unique function

t : X → [0, 1] such that for all i, θi ∈ Θi, Ri ∈ Λ(θi) and all x, x′ ∈ A(θi) with x θi x
′, we

have
Ä
x′, t(x′)

ä
Ri

Ä
x, t(x)

ä
.

1
X

(0, 0)

Y

1

Figure 7: A possible set of logrolling bundles

Each t function in Figure 7 (in fact any such decreasing function) could be used to

represent the set of logrolling bundles. In keeping with our main model, uniqueness of

the function t in this definition ensures a unique set of logrolling bundles. However,

as we elaborate in the discussion in Section 8, the uniqueness of this function is not

essential for a possibility result in either the discrete or the continuous model.59 Again

let B denote the set of logrolling bundles. For all values of `, j ∈ [0, 1] with j ≤ `,

let B`j = {(x, y) ∈ B | j ≤ x ≤ `} denote the set of all mutually acceptable logrolling

bundles at type profile (θ`1, θ
j
2).

Define B to be a complete, transitive, and antisymmetric binary relation over the set

of logrolling bundles. When (B, d) is a metric space with a proper metric d, B`j with

` ≥ j is a nonempty and compact subset of the set of logrolling bundles.

Definition 20. The binary relation B is said to be quasi upper-semicontinuous over

B`j with ` ≥ j if for all a, c ∈ B`j with a 6= c, a B c implies that there exists a bundle

a′ ∈ B`j and a neighborhood N (c) of c such that a′ B b for all b ∈ N (c) ∩B`j.
60

59In fact, if there were multiple such functions satisfying the logrolling property, then each one would

generate a different set of logrolling bundles and a separate family of strategy-proof, efficient, and indi-

vidually rational rules of the form that we characterize in the next result.
60This is Definition 2 in Tian and Zhoub (1995).
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The binary relationB is quasi upper-semicontinuous if it is quasi upper-semicontinuous

over all compact subsets B`j of B. A bundle b? ∈ B`j is said to be a maximal element

of the binary relation B on B`j, i.e., b? ∈ max
B`j

if b? B b for all b ∈ B`j. Theorem 1

of Tian and Zhoub (1995) proves that quasi upper-semicontinuity is both necessary and

sufficient for B to attain its maximum over all compact subsets B`j of B. Therefore, the

analogous version of Theorem 2 in the continuous case reads as follows.

Theorem 7. Suppose that the regular extension map Λ satisfies logrolling. The mediation

rule f is strategy-proof, efficient, and individually rational if and only if there exists a

complete, transitive, antisymmetric, and quasi upper-semicontinuous binary relation B

over the set of logrolling bundles B and some y ∈ Y \ {oY } such that

f`,j =


(oX, y), if ` < j,

max
B`j

B, oth.

Analogous to the discrete case, we use the following continuously indexed matrix to

describe a mediation rule f .
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(j,1−j)

(̀,1−`)
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Figure 8: Adjacent rules in the continuous case when t(x) = 1− x

The rows, i.e., the vertical axis, correspond to the types of negotiator 1 and columns,

i.e., the horizontal axis, indicate all possible types of negotiator 2. Each point on the

main diagonal represents a logrolling bundle for the mediation rule that is described in

Theorem 7, and each logrolling bundle appears only once on this diagonal. The bundle

b, for example, represents the value of f when the types of negotiator 1 and 2 are θ`1

and θj2, respectively. When the type profile is (θ11, θ
1
2), negotiator 1 finds all alternatives

acceptable and negotiator 2 deems all alternatives except 1 unacceptable.

Let us assume, without loss of generality, that t(x) = 1 − x. This implies that the

set of logrolling bundles is B = {(x, y) ∈ [0, 1]2 | y = 1− x}. Then the only mutually

acceptable logrolling bundle is (1, 0) at type profile (θ11, θ
1
2). The set of all acceptable
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logrolling bundles for type θ`1 of negotiator 1 is denoted by B1,`, which consists of all

the logrolling bundles on the upper portion of the main diagonal, starting from the top-

left corner bundle, (0, 1), and goes all the way down to the bundle (`, 1 − `). That is,

B1,` = {(k, 1− k) ∈ B | 0 ≤ k ≤ `}. Similarly, the set of all acceptable logrolling bundles

for type θj2 of negotiator 2 is represented by B2,j and consists of all the bundles on the

lower portion of the main diagonal, i.e., all bundles from (j, 1−j) to (1, 0). Namely, B2,j =

{(k, 1− k) ∈ B | j ≤ k ≤ 1}. Thus, the set of mutually acceptable logrolling bundles at

the type profile (θ`1, θ
j
2) is the intersection of these two sets, i.e., B`j = B1,`∩B2,j. Theorem

7 says that bundle b = f`,j is the logrolling bundle that maximizes B over the set B`j

(see Figure 8). Such a maximal bundle is always unique because B is antisymmetric.

7. Discussion and Extensions

In this section, we provide a general discussion of our main model in light of the

results obtained so far. To this end, first, we elaborate on some of our essential model-

ing assumptions, discuss the role they play in driving the positive results of our paper,

and offer directions in which they can be extended to cases not covered in the main

exposition. Second, drawing on our findings, we continue the discussion we started in

the related literature section on the comparison between the cardinal/Bayesian and the

ordinal mechanism design approaches. Specifically, we consider how one can go about

formulating the mediation problem in a standard Bayesian setting such as that of My-

erson and Sattertwaite (1983) [MS] and offer a reconciliation of the possibility results in

our setup with the impossibility result in the MS setting.

Symmetric treatment of the outside options: We start by exploring how our

results would change if the outside option in issue Y were also treated as each negotiator’s

private information. In particular, we consider a relaxation of the assumption that y θY
i oY

for all i ∈ I and y ∈ Y \ {oY }. Now the ranking of each of her outside options is

a negotiator’s private information. Let Θi = ΘX
i × ΘY

i denote the set of all types of

negotiator i, and Θ = Θ1×Θ2 the set of all type profiles. We now also need to adjust the

regularity assumption concerning the negotiators’ preferences over bundles. Specifically,

we need to modify the monotonicity and the deal-breakers conditions since both issues

can now potentially have unacceptable alternatives.

Definition 18. Under the symmetric treatment of the outside options, the extension map

Λ is regular if the following hold for all i, θi ∈ Θi and all Ri ∈ Λ(θi):

i. [Monotonicity] For any x, x′ ∈ X and y, y′ ∈ Y with (x, y) 6= (x′, y′),

(x, y) Pi (x′, y′) whenever
î
x θX

i x′ or x = x′
ó

and
î
y θY

i y′ or y = y′
ó
.

ii. [Deal-breakers] (oX, oY ) Pi (x, y) whenever oX θX
i x or oY θY

i y.
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Proposition 2. Under the symmetric treatment of the outside options, there is no me-

diation rule f that is strategy-proof, individually rational, and efficient.

Proposition 2 is a fairly straightforward extension of the impossibility result we dis-

cussed in case of single issue mediation. Having multiple issues alone is not sufficent

to offset the tension between strategy-proofness and efficiency unless the two issues are

treated asymmetrically. It is also easy to see the logical independence of the properties

in this impossibility. A rule that always picks the pair (oX, oY ) is strategy-proof but not

efficient. A dictatorship rule is strategy-proof and efficient but not individually rational.

A constrained dictatorship rule, where one negotiator always chooses her favorite bun-

dle from the set of individually rational and efficient bundles, violates strategy-proofness

despite satisfying the remaining two properties.

More than two issues or negotiators: As we argued earlier, the two-issue model is

without loss of generality. If there are more than two issues in the mediation problem,

then we can regroup these issues under two types of categories depending on whether

negotiators are assumed to have private outside options in an issue. In particular, let

category-X be the collection of issues for which a negotiator’s least acceptable alternative

is her private information and category-Y be the collection of issues in which it is common

knowledge that all alternatives are acceptable to both negotiators and the outside option

is the least desirable (inefficient) outcome. Under this regrouping, each negotiator now

faces a vector of alternatives for each category. The negotiators’ preferences over these

vectors (of alternatives) need not be diametrically opposed in general. However, as long as

the negotiators’ preferences are monotonic, by applying the idea in Proposition 1, one can

eliminate all the inefficient vectors and find ourselves back in an environment analogous

to our main model, in which preferences over vectors are diametrically opposed. When

there are multiple parties involved in a dispute as would be the case for community/public

disputes, we can similarly regroup them to be represented by either negotiator, effectively

treating them as clones of the two negotiators.

Issue-wise voting in the direct mechanism with veto rights: In our main model,

we assumed that the negotiators decide to accept or veto the proposed bundle as a whole

in the ratification stage of the direct mechanism representing the mediation protocol. An

alternative consideration would be to allow the negotiators to vote separately for each

individual alternative in the proposed bundle such that unless both negotiators accept

the alternative being voted on, the outside option is chosen as the final outcome in the

corresponding issue. In this case, revealing one’s type truthfully in the announcement

stage may no longer be an optimal strategy even if the mediation rule is strategy-proof.

Consider, for example, the negotiator-1 optimal rule. Suppose negotiator 1 reports a type
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θx`1 with ` < m. Suppose negotiator 2’s true type is θ
xj
2 with j > `. When negotiator 2

reports truthfully, the rule picks the disagreement bundle (oX, y1) as the recommendation

in the announcement stage of the direct mechanism. Both oX and y1 prevail in the

ratification stage when voted on individually. Suppose negotiator 2 were instead to report

type θ
xj′
2 with j′ ≤ `, in which case the rule picks the logrolling bundle (x`, ym−`+1) as the

recommendation in the announcement stage. In the ratification stage, negotiator 2 vetoes

the unacceptable alternative x` and the outcome of the mechanism is (oX, ym−`+1), i.e.,

2 gains by misreporting in the announcement stage. All adjacent rules can similarly be

shown to be manipulable under issue-wise voting. We conclude that there is no dominant

strategy incentive compatible and efficient direct mechanism with veto rights under issue-

wise voting.

The general impossibility of truthfully eliciting negotiators’ private information under

issue-wise voting underlines the importance of jointly resolving the two issues. In par-

ticular, bundling alternatives from different issues allows the negotiators to trade favors,

which our analysis reveals to be manifested by the logrolling bundles. Consequently, to

achieve dominant strategy incentives together with efficiency, it is paramount that the

ratification stage only allows for voting on proposed bundles as a whole.

More alternatives in issue Y : We assume that the number of alternatives in issue

Y is no less than the number of alternatives in issue X, i.e., #Y ≥ #X. When there

are more alternatives in issue Y , then Theorem 1 needs to be modified slightly to allow

for all one-to-one t functions since there can now be multiple possible pairings between

the alternatives in the two issues, i.e., multiple sets of logrolling bundles. Specifically, at

any given pair of bundles in the set of logrolling bundles (that comprise the diagonal),

the more preferred alternative from X must always paired up with the less preferred

alternative from Y , i.e., for any pair b = (x, y), b′ = (x′, y′) ∈ B, for all i, θi ∈ Θi and all

x, x′ ∈ A(θi), we have x θX
i x′ =⇒ y′ θY

i y. Any such function that permits reversal of

preferences as in Definition 5 suffices to generate a class of strategy-proof, efficient, and

individually rational mediation rules as decsribed in Theorem 2. In this case, there can

be multiple adjacent rules families depending on which set of logrolling bundles is chosen

to form the diagonal of the matrix.

Possibility without deal-breakers: The deal-breakers assumption provides tractabil-

ity in our analysis. One might wonder what role this assumption plays in obtaining a

possibility result. We provide an example (also see Example 5) to show that the deal-

breakers property is not necessary for a possibility result.

Example 4 (Possibility despite the failure of deal-breakers): Suppose that m =

3 and consider our model with monotonic preferences satisfying logrolling. We expand
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this domain of preferences by adding preferences that satisfy the following rankings:

θx1
1

[
(x1, y3)

][
(oX , y1)

]
(x3, y1)

(oX , y2)

(x2, y1)

(oX , oY )

θx2
1

[
(x2, y2)

][
(oX , y1)

]
(x1, y3)

(x3, y1)

(oX , y2)

(oX , oY )

θx3
1

[
(x3, y1)

]
(x2, y2)

(x1, y3)

(oX , y1)

(oX , oY )

θx1
2

[
(x1, y3)

][
(x2, y2)

]
(x3, y1)

(oX , y3)[
(oX , y1)

]
(oX , oY )

θx2
2

[
(x2, y2)

][
(oX , y1)

]
(x3, y1)

[
(x1y3)

]
(oX , oY )

θx2
2

[
(oX , y1)

]
(oX , oY )

(x1, y3)

(x2, y2)

While the above is one specific preference profile where the deal-breakers assumption

is violated, one can include as many preference profiles of this form to our domain as

long as the relative rankings of the bundles in the brackets are preserved. (The relative

rankings of the bundles within the same brackets can be chosen arbitrarily.) It is easy

to verify that negotiator 1-optimal rule is still strategy-proof, efficient, and individually

rational.

8. Conclusion

Mediation is a preferred alternative dispute resolution method thanks to the cost-

effectiveness, speed, and convenience it affords to all parties involved. The need for

structured and rigorous mediation protocols in practice has often been stressed by re-

searchers and practitioners alike. Taking a market design approach to this problem, we

sought systematic rules mediators can rely on to for delivering consistent, transparent,

and objective recommendations. We considered rules that have a simple preference re-

porting language: negotiators only report their least acceptable alternatives in the main

issue. It turns out that complementing the main issue with a second issue—a piece of ad-

vice often voiced by pioneers in the field—is key to achieving strategy-proof, efficient, and

individually rational rules. Any such rule belongs to the family of adjacent rules, which

require that the mediator’s recommendation must always be a logrolling bundle when a

mutual agreement is feasible, i.e., a bundle that complements a (rank-wise) more preferred

alternative in one issue with a (rank-wise) less preferred alternative in the other. A suf-

ficient (and necessary) condition for strategy-proofness is the logrolling (weak logrolling)

property of preferences that necessitates the alternatives in the second issue to be inter-

esting enough relative to those in the main issue. The constrained shortlisting rule is

the central member within the characterized class and aims to make recommendations as

close to the median logrolling bundle as possible. We contend that this rule is intuitive

and simple enough to be used as a standardized protocol for finding the middle ground

between disputing parties in practice.
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Our approach marries the two distinct literatures of bargaining and matching. The

former literature emphasizes the role of private information and outside options in mech-

anism design with transferable utility. In this literature the optimal mechanism is rarely

first-best. The latter literature offers blueprints for designing robust protocols in as-

signment problems that often arise in practice. The multiple-assignment nature of the

problem at hand in our study, however, is less than encouraging in light of the abun-

dance of negative results in that literature. Our analysis confirms these challenges in

that possibility results in our framework are also elusive unless the outside options in the

two issues are treated asymmetrically. We argued that ordinal mechanisms coupled with

strategy-proofness can help obtain detail-free and genuinely simple mechanisms for me-

diating disputes in practice. Notwithstanding our emphasis on ordinality, the framework

developed in this paper can accommodate both transferable and nontransferable utility

settings.

SUPPLEMENTARY APPENDIX (Not for Publication)

Relating to the impossibility result of MS

The influential work of MS is an important milestone for bargaining problems with

asymmetric information. It is useful to discuss the underlying factors that are absent in

the MS model, which may account for the possibility results in our model. Briefly, the

mechanism design problem in that model concerns a bilateral trade between a buyer and

a seller, who have private information about their valuations of a good. The mechanism

has two components: the probability of trade, p, and the transfer, x, both of which are

functions of the traders’ reports. If no trade occurs, then x = p = 0 (the outside option),

and so both traders receive zero utility. The utility functions are Ub = vbp − x for the

buyer and Us = x− vsp for the seller, where the valuations vb, vs are the traders’ private

information.

It is initially tempting to view the MS model as a two-issue mediation problem, where

the probability of trade is one issue and the size of the transfer is the other issue. It is

clear from the utility functions that the traders’ preferences over the individual issues are

indeed diametrically opposed. That is, for any fixed value of x, as p increases, the buyer

is better off and the seller is worse off. Similarly, for any fixed value of p, as (any positive

value of) x increases, the buyer is worse off. Moreover, the quasi-linear utility functions

in MS also satisfy the monotonicity and the logrolling assumptions of our model.

It is already well known in the literature that the denseness of the type space is one

of the reasons for the impossibility result in MS.61 However, this is not the driving force

61For example, Matsuo (1989) shows the feasibility of efficient mechanisms in the MS setup when each

trader has only two types.
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for our possibility result, as shown by the continuous version of our model in Section 6.

A notable difference between the two models is that MS takes agents’ preferences over

bundles as a primitive in the model, whereas we start with preferences over alternatives

for each issue, i.e., the marginal preferences, and then generate the set of all possible

preferences over bundles that are compatible with the reported marginals. This implies

that a trader’s outside option in the MS model, i.e., no trade, is defined in conjunction

with the two issues as opposed to the issue-wise outside options defined separately in our

model, e.g., individual rationality in the MS model implies that p = 0 if and only if x = 0,

whereas in our model an individually rational bundle may choose the outside option for

one issue but not the other. Given this difference in how outside options are defined, it

is elusive to translate the MS model directly into our framework.

Nevertheless, it may be plausible to draw a rough parallel between the two models.

If we think of the two issues in the MS model as sharing a single, joint outside option

for each trader, then the two issues can effectively be viewed as one combined issue. In

this case, the MS model would correspond to our single-issue mediation model, where

strategy-proofness, efficiency, and individual rationality are incompatible. Alternatively,

if we think of p = 0 and x = 0 as two separate outside options, the set of acceptable

alternatives in issue x for the buyer must satisfy pvb ≥ x for any fixed value of p, and this

set is the buyer’s private information as vb is not common knowledge. The same is true

for the set of acceptable alternatives in issue p, and for the seller. Therefore, the set of

acceptable outcomes (or the rankings of the outside options in each individual issue) are

the traders’ private information.62 In this case, the MS model would correspond to our

two-issue model that treats the outside options symmetrically, i.e., the model considered

at the beginning of this section. Regardless of whether the outside options in the MS

model are viewed to be joint or separate, our conclusions are in agreement with that

of MS: for both models, there is no strategy-proof, efficient, and individually rational

mechanism. What is needed for a possibility is a new issue which treats the outside

option asymmetrically as in the case of issue Y in our model.

To provide an illustration of the above points, in the following example we offer a

simple adaptation of the MS setup in our model and demonstrate how one can overcome

the impossibility by adding an extra issue:

62Furthermore, efficiency in MS implies that the probability of trade is generically either 0 or 1,

depending on whether or not the buyer’s valuation is higher than the seller’s valuation. Namely, for any

type profile, a bundle (x, p) is inefficient if p ∈ (0, 1), and so in line with Proposition 1, we can eliminate

all the alternatives p ∈ (0, 1) from issue p. This suggests that the second issue essentially contains only

two alternatives while there is a continuum of alternatives in issue X. Importantly, whether p = 1 or

p = 0 is efficient depends on the traders’ reports unlike the case with the alternatives in issue Y of our

model.
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Example 5 (Possibility in the augmented MS framework): Suppose that the

seller and the buyer now negotiate not only over the terms of trade but also over the

division of a unit surplus. We refer to the latter as issue Y . The valuations of the good

to the buyer and the seller are vb and vs, respectively. We assume that each negotiator

knows her valuation and believes that the opponent’s valuation is distributed over [0, 1]

with some probability distribution. The mediator privately solicits the traders’ valuations

and recommends a quadruple (p, x, ys, yb), where p denotes the probability of trade, x is

the transfer, and ys and yb are the seller’s and the buyer’s (respectively) share of the unit

surplus. The preferences of the two traders are as follows:

Ub = pvb − x+ ub(yb) Us = x− pvs + us(ys).

For simplicity, suppose that ub(y) = us(y) = y and each trader has only two types,

vb, vs ∈ {0.2, 0.6}.
Efficiency implies that p = 1 if vb ≥ vs, p = 0 if vs < vb, and yb + ys = 1. Individual

rationality implies that the traders’ utilities are nonnegative. Therefore, the following

mechanism is strategy-proof, efficient, and individually rational:63

vs = 0.2

vs = 0.6

vb = 0.6 vb = 0.2

p = 1

x = 0.6

ys = 0.3

yb = 0.7

No
trade

ys = 0.5

yb = 0.5

p = 1

x = 0.4

ys = 0.5

yb = 0.5

p = 1

x = 0.2

ys = 0.7

yb = 0.3

When issue Y is absent, this mechanism is not strategy-proof. In fact, it is easy to

show that there is no strategy-proof, efficient, and individually rational mechanism in

that case.

Two observations about this example are worth noting. First, this example also

serves to show that the deal-breakers assumption is not necessary for a possibility result

in our setup.64 Second, it hints at a certain similarity between our mechanisms and the

celebrated VCG mechanisms. Restoring strategy-proofness in the MS setup comes to the

mediator at the cost of an additional unit of surplus. This is much like a budget imbalance

that may arise in a VCG mechanism, in which case the planner may be compelled to

subsidize the trade.

63The seller of type vs = 0.2 has no incentive to mimic type vs = 0.6. This is true because the seller’s

payoff under truth-telling (which is 0.7 regardless of the buyer’s type) is higher than or equal to her

deviation payoffs 0.7 (if the buyer is of type vb = 0.6) and 0.5 (if the buyer is of type vb = 0.2). Similarly,

the seller of type vs = 0.6 has no incentive to mimic type vs = 0.2. Her payoff under truth-telling is

either 0.3 (if the buyer is type vb = 0.6) or 0.5 (if the buyer is type vb = 0.2). However, her deviation

payoffs are 0.3 regardless of the buyer’s type. Symmetric arguments apply for the buyer.
64Indeed, regardless of the realization of their types, either negotiator would rather make no trade,

i.e., p = x = 0, but get the whole surplus than make a trade via this mechanism.
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Logrolling (Quid Pro Quo)

A critical requirement for our possibility results is (weak) logrolling. It requires that

the issue Y has sufficient appeal for the negotiators so that they are willing to trade an

acceptable alternative in issue X with a less preferred (yet still acceptable) alternative in

X. In this supplementary appendix, we provide geometric illustrations of the logrolling

condition and further explore its implications. In particular, we seek conditions on nego-

tiators’ utility functions that would make the underlying preferences compatible with this

condition. To this end, we progressively consider two scenarios. First, we reconsider the

setting of our main model, where the set of alternatives is finite but does not necessarily

represent the division of a divisible commodity. Next, we consider settings where the set

of alternatives may be finite or a continuum and issues represent division of a divisible

commodity (as in Example 3 or the model in Section 6).

Let us reconsider the main model. Suppose, for an example, that each issue X and Y

has three alternatives, i.e., m = 3. Let U(x, y) = u(x) + v(y) be the additively separable

the utility function of negotiator 1, where u(.) and v(.) represent preferences over issues

X and Y , respectively. The utility specifications are given in the table below. Observe

that these preferences are compatible with the logrolling assumption.65

X u(.) Y v(.) X × Y U(.)

x1 100 y1 20 (x3, y1) 110

x2 98 y2 12 (x2, y2) 110

x3 90 y3 10 (x1, y3) 110

In standard consumer theory, it is customary to represent preferences through indif-

ference curves on a commodity space. In our framework, issues play the same role as

commodities so we can still invoke indifference curves. One caveat of such representation

is that when the alternatives in a finite set do no correspond to commodity consumption

levels, the distance between any two alternatives is immaterial. Therefore, without loss

of generality, we position all alternatives equidistantly in the following representation.

By convention, we also place less preferred alternatives in each issue closer to the origin,

which by monotonicity implies higher indifference curves as we move to the northeast.

Some of the indifference curves of negotiator 1, who deems all alternatives acceptable in

the above example, can be depicted as follows:

65Note that although the worst alternative in issue X is 4.5 times more valuable, in absolute terms,

than the best alternative in issue Y , this does not contradict our requirement since logrolling concerns

only relative differences in utility.
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x3 x2 x1

y3

y2

y1

Y

X

As evident from this graph, logrolling is a property of the bundles that are placed on

the diagonal. Logrolling then requires that negotiator 1 is weakly better off as we move

along the diagonal to the northwest and, respectively, negotiator 2 (whose indifference

curves are not depicted) is weakly better off in the southeast direction.66

Suppose now the alternatives (of which there is a finite number) in the two issues

represent quantities. For an illustration, let us consider a moral hazard situation between

a principal and an agent, where X denotes the set of possible wage levels and Y denotes

the set of possible effort/output levels. Let the agent’s and the principal’s utility functions

respectively be Ua(x, y) =
√
x − y2 and Up = Ky − x for some large enough K > 0.

Suppose that the logrolling bundles are chosen from the contract curve (Pareto set) of

this problem. Then the logrolling condition is satisfied since the principal (respectively,

the agent) becomes better off as we move along the contract curve in the northwest

direction (respectively, southeast direction), as depicted below.

Principal

U′′
p

U′
p

Up

U′′
a

U′
a

Ua

Agent

Principal

Agent

Y (effort/output)

X(wage)
66For this discrete representation, suppose we define the notion of marginal rate of substitution (MRS)

at a bundle as the relative gain vs. loss ratio of the number of ranks in issue X vs. Y that keeps the

negotiator indifferent, e.g., MRS at bundle (x, y) is the ratio of the number of ranks she should go up in

issue Y to the number of ranks she should go down in issue X to remain indifferent. Clearly, the notion

may not be well defined at each bundle. Although the indifference curve through the logrolling bundles

in this example is linear, i.e., constant MRS of 1, logrolling generally puts no restriction on the shape of

the indifference curves, e.g. logrolling is compatible with both convex and concave indifference curves.
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Given these illustrations, we are now ready to formalize the sufficiency conditions on

negotiators’ utility functions that guarantee the logrolling property. For tractability, we

now assume a continuum of alternatives in each issue.

Let
¨
X, Y, U1, U2

∂
represent the mediation problem with continuum of alternatives,

where X = [x, x̄] ⊂ R, Y = [y, ȳ] ⊂ R, and Ui : R2 → R is a differentiable and

increasing utility function that represents negotiator i’s preferences over the bundles. In

this environment, a bundle (xi, yi) indicates that negotiator i gets xi and yi in issues X

and Y , respectively. Thus, an outcome in mediation is a pair of bundles, (x1, y1) and

(x2, y2) one for each negotiator, such that x1 + x2 = x̄ and y1 + y2 = ȳ. Therefore, in this

context, the pair of utility functions U1 and U2 satisfies the logrolling property if there

exists a set of logrolling bundles, i.e., a pair of functions (t1, t2) where ti : X → Y for

each i and t1(x) + t2(x) = x̄ for all x ∈ X, such that Ui(x, ti(x)) ≤ Ui(x
′, ti(x

′)) for all i

and all x, x′ ∈ X with x > x′.

The following lemma provides sufficiency conditions (for logrolling) on the negotiators’

utility functions in conjunction with the negotiators’ t functions that govern the set of

logrolling bundles.

Lemma S.1. Given any pair of strictly decreasing functions (t1, t2), where ti : X → Y

for each i and t1(x) + t2(x) = x̄ for all x ∈ X, any pair of increasing and differentiable

utility functions U1 and U2 satisfy the logrolling property if

∂Ui/∂x

∂Ui/∂ti(x)

∣∣∣∣
(x,ti(x))

≤ ∂ti/∂x

∂ti/∂ti(x)

∣∣∣∣
(x,ti(x))

(1)

holds for all i and all x ∈ X. Alternatively, given any pair of increasing and differentiable

utility functions U1 and U2, any pair of strictly decreasing functions (t1, t2), where ti :

X → Y for each i and t1(x) + t2(x) = x̄ for all x ∈ X, induce a set of logrolling bundles,

and so U1 and U2 satisfies the logrolling property, if the inequality (1) holds for all i and

all x ∈ X.

Proof. Let t1 and t2 be any two strictly decreasing functions, where ti : X → Y for each

i and t1(x) + t2(x) = x̄ for all x ∈ X, and U1 and U2 be increasing and differentiable.

Because the inequality 1 holds for any x ∈ X, the indifference curve of negotiator i that

passes from the point (x, ti(x)) will lie below the curve ti and never cross it again for

points x′ located left of x, i.e., x′ < x. Therefore, for any x, x′ ∈ X with x > x′, the

indifference curve for negotiator i that passes from the point (x, ti(x)) lies below the

indifference curve that passes from the point (x′, ti(x
′)) because Ui is increasing and ti is

decreasing. Thus, Ui(x, ti(x)) ≤ Ui(x
′, ti(x

′)), and thus, the pair (t1, t2) induces a set of

logrolling bundles and U1 and U2 satisfy the logrolling property.

Lemma S.1 suggests that if the mediator knows the underlying utility functions of the

negotiators, then this information can guide his choice of the set of logrolling bundles. In
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particular, the t function that characterizes a negotiator’s set of logrolling bundles must

be steeper than the corresponding indifference curve of that negotiator at these bundles.

Conversely, if the mediator has determined the set of logrolling bundles but is uncertain

about the negotiators’ preferences, then the same restriction essentially reveals what type

of utility functions would be compatible with such a choice of logrolling bundles.

In light of Lemma S.1, many well-behaved preferences, e.g., all constant elasticity

of substitution (CES) utility functions and quasi linear utility, are compatible with

logrolling. For example, in an environment where X = Y = [a, b] ⊆ R2 and the diagonal

consists of all the logrolling bundles (see below), the utility function U(x, y) =
√
x+ y is

consistent with logrolling whenever 1/4 ≤ a. This is true because the upper counterset

of a bundle (x, y) that is on the diagonal includes all the other bundles (x′, y′) on the

diagonal that are situated northwest of the original bundle (x, y).

b

b bundles that are
at least as good as (x, y)

higher
indifference curves

(x, y)

(x′, y′)

(a, a)

ti(.)

Y

X

Finally, the necessary and sufficient condition weak logrolling is compatible with even

larger classes of utility functions. An example is Cobb-Douglass utility. Suppose, for

example, that both negotiators’ preferences are of the form U(x, y) = xy and the diagonal

consists of all the logrolling bundles (see below). Then the logrolling property for the

first half of the alternatives in issue X holds for negotiator 1, and the logrolling property

for the second half of the alternatives holds for negotiator 2, and thus, preferences are

compatible with weak logrolling.

b

b
y = x

preferred
bundles

preferred
bundles

(a, a)

Y

X
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The Revelation Principle

A mediation mechanism with veto rights Γ =
Ä
S1, S2, g(.)

ä
is a collection of action

sets (S1, S2) and an outcome function g : S1×S2 → X ×Y . The mechanism Γ combined

with possible types (Θ1,Θ2) and preferences over bundles (R1, R2) with Ri ∈ Λ(θi) for

all i defines a game of incomplete information. A strategy for negotiator i in the game

of incomplete information created by a mechanism Γ is a function si : Θi → Si.

Lemma S.2 (Revelation Principle in Dominant Strategies). Suppose that there

exists a mechanism Γ =
Ä
S1, S2, g(.)

ä
that implements the mediation rule f in dominant

strategies. Then f is strategy-proof and individually rational.

Proof. If Γ implements f in dominant strategies, then there exists a profile of strategies

s∗(.) =
Ä
s∗1(.), s

∗
2(.)
ä

such that g
Ä
s∗(θ)

ä
= f(θ) for all θ ∈ Θ, and for all i ∈ I and all

θi ∈ Θi,

g
Ä
s∗i (θi), s−i(θ−i)

ä
Ri g

Ä
s′i(θ

′
i), s−i(θ−i)

ä
(2)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi, θ−i ∈ Θ−i and all s′i(.), s−i(.). Condition 2 must also hold for

s∗, meaning that for all i and all θi ∈ Θi,

g
Ä
s∗i (θi), s

∗
−i(θ−i)

ä
Ri g

Ä
s∗i (θ

′
i), s

∗
−i(θ−i)

ä
(3)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi, and all θ−i ∈ Θ−i. Because g(s∗(θ)) = f(θ) for all θ ∈ Θ, the

last inequality implies that for all i and all θi ∈ Θi,

f(θi, θ−i) Ri f(θ′i, θ−i) (4)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi, and all θ−i ∈ Θ−i.

Moreover, because mechanism Γ allows each negotiator to veto the proposed bundle

and receive the outside options in each issue, there also exists a deviation strategy ŝi(.)

for any strategy si(.) such that g(ŝi(θi), s−i) =
Ä
oX, oY

ä
for all θi ∈ Θi and all s−i ∈ S−i.

The idea is that the negotiator i plays in ŝi(.) exactly the same way in si(.) (for all θi’s)

until the ratification stage and vetoes the proposed bundle.

Therefore, if ŝi(.) is such a deviation strategy for s∗i (.), then condition 2 must also

hold for ŝi(.), implying that for all i and θi ∈ Θi,

g
Ä
s∗i (θi), s

∗
−i(θ−i)

ä
Ri g

Ä
ŝi(θ

′
i), s

∗
−i(θ−i)

ä
=
Ä
oX, oY

ä
for all Ri ∈ Λ(θi), θ

′
i ∈ Θi and all θ−i ∈ Θ−i. Because g(s∗(θ)) = f(θ) for all θ ∈ Θ, the

last condition means that for all i and all θi ∈ Θi,

f(θi, θ−i) Ri

Ä
oX, oY

ä
(5)
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for all Ri ∈ Λ(θi), θ
′
i ∈ Θi and all θ−i ∈ Θ−i. Hence, conditions 4 and 5 imply that f is

strategy-proof and individually rational.67

APPENDIX

Proof of Proposition 1: Let ‹A ⊆ A be the set of alternatives that survive the

elimination of Pareto inefficient alternatives. That is, none of the alternatives in ‹A is

Pareto inefficient. Renumber the elements in ‹A, and suppose, without loss of generality,

that ‹A = {x1, ...., xm} where m ≥ 2, and negotiator 1 ranks alternatives as xk θ̃1 xk+1. If

xm is not the best alternative for θ̃2 on ‹A, then there must exist some xk where k < m such

that xk θ̃2 xm. But this contradicts the assumption that xm is not Pareto inefficient. Thus,

negotiator 2 must rank xm as the top alternative. With similar reasoning, if xm−1 is not

negotiator 2’s second-best alternative, then it must be Pareto inefficient, contradicting

the assumption that xm−1 survives after the deletion of Pareto inefficient alternatives.

Iterating this logic implies that the rankings of the negotiators must be diametrically

opposed. �

Proof of Theorem 1: Now suppose that Λ is regular and the mediation rule f is

strategy-proof, efficient, and individually rational.

Proof of Part i : By individual rationality and regularity of preferences, the al-

ternative for issue X must be oX whenever ` < j. Then by regularity and efficiency,

f`,j = (oX, y) for some y ∈ Y \ {oY }. By strategy-proofness and monotonicity, we must

have f`′,j = (oX, y) for all `′ < j. Similarly, f`,j′ = (oX, y) for all ` < j′. Fixing j (and `)

and applying the same argument for all remaining rows and columns yields f`,j = (oX, y)

whenever ` < j.

Proof of Part ii and existence of t : Consider the main diagonal where ` = j = k.

Now, we want to show that fk,k = (xk, t(xk)) for every k = 1, ...,m and t(xk) = ym+1−k.

Row and column k correspond to preference profile (θxk1 , θ
xk
2 ) where the only mutually

acceptable alternative in issue X is xk. Therefore, for any 1 ≤ k ≤ m efficiency and

individual rationality of f and regularity of preferences imply fX
k,k = xk and fX

k+1,k ∈
{xk, xk+1} whenever k 6= m. We claim that fY

k+1,k+1 θ
Y
1 fY

k,k for each k = 1, ...,m − 1. If

this statement is correct, then we have the desired result (including t being unique and

one-to-one) because the number of alternatives in issue X and Y is the same.

67If negotiators were to approve or veto each issue separately, then we would have

f(θi, θ−i) Ri
(
fX(θ′i, θ−i), oY

)
and f(θi, θ−i) Ri

(
oX , fY (θ′i, θ−i)

)
, where fZ(.) denotes the suggested al-

ternative by f in issue Z, together with conditions 4 and 5.
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Consider any 1 ≤ k ≤ m − 1. If fX
k+1,k = xk+1, then strategy-proofness and mono-

tonicity of preferences of negotiator 2 imply that fY
k+1,k = fY

k+1,k+1. Similarly, strategy-

proofness and monotonicity of preferences of negotiator 1 require that fY
k+1,k+1 θ

Y
1 f

Y
k,k. On

the other hand, if fX
k+1,k = xk, then strategy-proofness and monotonicity of preferences

of negotiator 1 imply that fY
k+1,k = fY

k,k. But then strategy-proofness and monotonicity

of preferences of negotiator 2 require that fY
k,k θ

Y
2 fY

k+1,k+1, which implies fY
k+1,k+1 θ

Y
1 fY

k,k

as the negotiators’ preferences over the alternatives in issue X are diametrically opposed.

An important implication of part (ii) is that for type θxk2 of negotiator 2 all the bundles

in B that appear below the bundle fk,k on the first diagonal are acceptable, i.e., strictly

better than the bundle of outside options. Likewise, for type θxk1 of negotiator 1 all the

bundles in B that appear above the bundle fk,k on the first diagonal are acceptable.

f =

Acceptable bundles in B
for type θxk

2

Acceptable bundles in B
for type θxk

1

θxk2

θxk1
fk,k

Proof of Part iii : We refer to bundles {fk,1, fk+1,2, ..., fm,m−k+1} where k = 1, ...,m

as those on the k−th diagonal. Note that each diagonal has one less bundle than its

immediate predecessor and the m−th diagonal consists of a single bundle, namely fm,1.

Lemma 1. Suppose that adjacency holds for all bundles on all diagonals t = 2, ..., k

where k ≤ m. That is, for all t ∈ {2, ..., k} and m ≥ ` > j with ` = j + t − 1,

f`,j ∈ {f`−1,j, f`,j+1} ⊂ B. Consider two bundles a, b ∈ B that appear on some diagonal

t ∈ {2, ..., k}. If bundle a lies on a higher row than b on the first diagonal, then a also

lies on a higher row than b on all diagonals up to (and including) diagonal t.

Proof. Since both a and b appear on diagonal t, by adjacency, they must also both appear

on every diagonal from the second through (t−1)−st diagonal. Suppose that a lies above

b on the first diagonal. From the first diagonal to the second, adjacency implies that a

bundle can either move one cell horizontally to the left or drop one cell down. If a moves

horizontally, clearly it will remain above b on the second diagonal. If a drops down one

cell, it remains above b or on the same row with b (which happens when a and b are

diagonally adjacent on the first diagonal). In the former case, b is clearly below a on

the second diagonal. In the latter case, for b to also appear on the second diagonal it

must also have dropped one cell below, in which case it is again below a on the second

diagonal. Iterating this argument for rows 3 through t yields the desired result.
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STEP 1 (Adjacency): We first show the following: Take a bundle on some diag-

onal except the first one. This bundle is equal to the bundle immediately above it or

immediately to its right. Lemma 2 states this more formally.

Lemma 2. f`,j ∈ {f`−1,j, f`,j+1} ⊂ B for all j < ` ≤ m.

Proof. In the proof of part (ii) we showed that the set of bundles on the first diagonal is

equal to the set of bundles B. Consider any j < ` ≤ m and suppose for a contradiction

that f`,j /∈ {f`−1,j, f`,j+1} ⊂ B. Note that strategy-proofness implies f`,j R1 f`−1,j for all

admissible R1 and all types that find bundles f`,j and f`−1,j acceptable, and f`,j R2 f`,j+1

for all admissible R2 and all types that find bundles f`,j and f`,j+1 acceptable.

f =

f`,j

f`−1,j

f`,j+1

θ
xj+1

2

θ
x`−1

1

a

b

θ
xj
2

f`,j

θ
xj
2

θx`1

fj,j = (xj, ŷj)

f`,`

=

(x`, ŷ`)
fk,k

fk,jθxk1

=
(xk
, ŷk

)

The bundles f`,j+1 and f`−1,j appear on the first diagonal because they are both in

B. Furthermore, f`,j+1 appears on or below bundle a while f`−1,j appears on or above

bundle b because f is individually rational (see the last figure). If f`,j ∈ B, then it should

also appear on the main diagonal. If it is located below a, then it means type θ
xj+1

2 finds

both f`,j and f`,j+1 acceptable, which means she has incentive to deviate to θ
xj
2 to get

f`,j, contradicting the strategy-proofness of f . On the other hand, if it is located above

b, then type θ
x`−1

1 finds both f`,j and f`−1,j acceptable, meaning that she has incentive to

deviate to θx`1 to get f`,j, again contradicting the strategy-proofness of f . Thus, f`,j has

to be equal to one of these two bundles if f`,j is in B.

Suppose now that f`,j /∈ B. Note that row ` and column j correspond to the profile

(θx`1 , θ
xj
2 ) and by efficiency and individual rationality fX

`,j ∈ {xj, xj+1, ..., x`}. By mono-

tonicity and strategy-proofness fX
`,j cannot be xj because f`,j /∈ B and so fY

`,j 6= ŷj.

Similarly, fX
`,j 6= x`. Now suppose that fX

`,j = xk where j < k < `. Again by mono-

tonicity and strategy-proofness we must have fk,j = f`,j: this is true because any bundle

acceptable to type θxk1 is also acceptable to type θx`1 and f`,j is acceptable to θxk1 , and

thus if fk,j 6= f`,j one of these types would have incentive to deviate. But then again by

monotonicity and strategy-proofness (regarding negotiator 2) we have fk,j = f`,j = fk,k,

which contradicts the presumption that f`,j /∈ B.
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STEP 2 (Construction of a precedence order B): By step 1, we know that

f`,j ∈ {f`−1,j, f`,j+1} ⊂ B for all ` > j. To construct B, perform a pairwise comparison

for all the entries f`,j, f`−1,j, f`,j+1. More formally, f`−1,j B f`,j+1 whenever f`,j = f`−1,j

and f`,j+1 B f`−1,j whenever f`,j = f`,j+1. We obtain a partial order B on B, which may

not be complete at this point. Next, we will show that B is antisymmetric and transitive.

Lemma 3. Order B is antisymmetric. That is, for any a, b ∈ B, a B b implies ¬b B a.

Proof. Suppose for a contradiction that there are a, b ∈ B such that both a B b and

b B a hold. Let t ≥ 1 be the smallest diagonal on which a and b are diagonally adjacent

and a is “chosen” according to B. That is, let f`−1,j = a, f`,j+1 = b, and so f`,j = a.

Because f is efficient, individually rational, and taking values a and b when negotiator

1 announces her type as θx`1 , both bundles must be acceptable to all types θxk1 where

k ≥ `. Moreover, because b B a by assumption, there must exist another diagonal t′ > t

in which a and b are diagonally adjacent and b is chosen. By Lemma 1, bundles a and b

cannot be adjacent to one another more than once on the same diagonal, and thus t′ > t.

Therefore, let fs−1,r = a, fs,r+1 = b = fs,r. By Lemma 1 and Lemma 2, we have s > `.

Strategy-proofness implies that b R1 a for all admissible R1 ∈ Λ(θxs1 ), and so we must

have b R1 a for all admissible R1 ∈ Λ(θxk1 ) where k ≥ `, including type θ
xs−1

1 . But the last

observation contradicts the strategy-proofness of f as type θ
xs−1

1 would profitably deviate

to θxs1 and get bundle b rather than a.

Let two bundles a and b be diagonally adjacent. If a lies on a higher row than b,

then we say that a is diagonally adjacent to b from below. Equivalently, we say that b is

diagonally adjacent to a from above.

Lemma 4. (i) Let bundle a = f`,j ∈ B be diagonally adjacent to some bundle b ∈ B

from below and a B b. Then, bundle b never appears on or below row `, i.e., there

is no k ≥ ` and r such that fk,r = b. Additionally, bundle a never appears (strictly)

above row ` and (strictly) to the left of column j, i.e., there is no `′ < ` and j′ < j

such that f`′,j′ = a.

(ii) Let bundle c = f`,j ∈ B be diagonally adjacent to some bundle d ∈ B from above

and c B d. Then, bundle d never appears on column j or any lower column, i.e.,

there is no k ≤ j and r such that fr,k = d. Additionally, bundle c never appears

(strictly) below row ` and (strictly) to the right of column j, i.e., there is no `′ > `

and j′ > j such that f`′,j′ = c.

Proof. We prove part (i), as symmetric arguments suffice to prove part (ii). First part

of (i): The bundle b must be above a on the first diagonal because b is above a at some

diagonal. Moreover, negotiator 2 may receive bundles a and b (depending on negotiator 1’s

type) when she declares her type as θ
xj−1

2 , and so by efficiency and individual rationality
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of f , both these bundles must be acceptable for type θ
xj−1

2 of negotiator 2. Suppose for

a contradiction that b occurs below row `. By the adjacency property, this b should be

coming all the way from the main diagonal, and so b must also appear on row `. Let

f`,k = b for some k 6= j, j − 1. Strategy-proofness implies b R2 a for all admissible R2

and all types of negotiator 2 that deem both bundle a and b acceptable. But then type

θ
xj−1

2 would profitably deviate to type θxk2 in order to get the bundle b rather than a,

contradicting the strategy-proofness of f .

Second part of (i): Because f`−1,j−1 = b, the bundle b must appear on the first diagonal

on column j or higher. Because a is below b on main diagonal as well, it can also appear

on the main diagonal on column j + 1 or higher. Therefore, if bundle a appears in the

region, for a contradiction, then by the adjacency property bundle a must appear on

column j + 1 as well. Let fk,j+1 = a for some k ≤ ` − 1. But if a is acceptable for type

θxk1 of negotiator 1, it must also be acceptable for type θ
x`−1

1 of negotiator 1, when he gets

the bundle b. Therefore, because f`,j−1 = a and f`−1,j−1 = b, strategy-proofness implies

b R1 a for all admissible preferences and all types of negotiator 1 that deem both bundles

acceptable. But then type θx`1 deems both bundles acceptable and prefers to deviate to

type θ
x`−1

1 to get b rather than a, contradicting the strategy-proofness of f .

Lemma 5. Order B is transitive. That is, for any triple a, b, c ∈ B such that a B b and

b B c, we have ¬c B a.

Proof. Suppose, for a contradiction, that a B b and b B c, but c B a. Without loss of

generality, suppose b is diagonally adjacent to a from above. Let t ≥ 1 be the smallest

diagonal on which a and b are adjacent where f`,j = a, f`−1,j−1 = b and f`,j−1 = a because

a B b. By Lemma 4 part (i), b never appears on row ` or below. Let t′ be the smallest

diagonal on which b and c are adjacent. We consider two cases:

Case 1: t′ ≥ t: This case has two subcases:

Case 1A: Suppose first that c is adjacent to b from below on diagonal t′: Consider

diagonal t. Clearly, c should also lie on this diagonal, for otherwise, by Lemma 1 it cannot

be on diagonal t′ ≥ t. Then by Lemma 2, since c is adjacent to b from below on diagonal

t′, it must appear below b on row ` + 1 or below on diagonal t. Then by Lemma 1 and

adjacency, c can appear only on ` + 1 or below on diagonal t′ ≥ t as well. However, by

Lemma 4 part (i), f`,j = a B b implies that b can never appear on row ` or below. This

means that b and c cannot be adjacent on diagonal t′ ≥ t, a contradiction.

Case 1B: Suppose now that c is adjacent to b from above on diagonal t′. Let fp,q = b

and fp−1,q−1 = c. Because b never appears on row ` or below, p ≤ ` − 1. By Lemma 3,

b B c implies fp,q−1 = b. By Lemma 4 part (i), b B c implies that c never appears on

row p or below. Because b is diagonally adjacent to a from above and c is adjacent to b

from above, by Lemma 2, c B a implies that c must be adjacent to a from above on some

diagonal t′′. By Lemma 2, there is no b on diagonal t′′, for otherwise it would be either
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below a or above c. Then t′′ > t′. Thus, let fr,s = a and fr−1,s−1 = c on diagonal t′′, and

so fr,s−1 = c by c B a. Because there is no c on or below row p ≤ ` − 1, a and c must

then be adjacent above row p on diagonal t′′ > t′. That is, r < p. Then t′′ > t′ implies

that s ≤ q−2. Because there is no c on row p ≤ `−1 or below and t′ ≥ t, fr,s = a lies on

row above row p, i.e., r < p and on column j − 2 or to the left, i.e., s ≤ j − 2. However,

by Lemma 4 part (i), f`,j = a B b implies that bundle a should never appear in the box

(strictly) above row ` and (strictly) to the left of column j, a contradiction.

Case 2: t′ < t: This case also has two subcases.

Case 2A: Suppose c is adjacent to b from above on diagonal t′. Consider diagonal

t′. Clearly, a should also lie on this diagonal, for otherwise, by Lemma 1 it cannot be on

diagonal t > t′. Since a lies below b on diagonal t, it must again be below b on diagonal t′.

Let k be the row on which b lies on diagonal t′. Clearly, a lies below row k on diagonal t′

or any other diagonal t′′ > t. Since c is adjacent to b from above on diagonal t′ and b B c,

Lemma 4 part (i) implies that c never appears on row k or below. Thus, a and c cannot

be diagonally adjacent on any diagonal t′′ > t′. But they cannot be diagonally adjacent

on any diagonal t′′′ < t′ either because that would mean that there is no b on diagonal

t′′′, for otherwise b would be above c or below a, contradicting Lemma 2, a contradiction.

Case 2B: Suppose c is adjacent to b from below on diagonal t′. Consider diagonal

t′. Clearly, a should also lie on this diagonal, for otherwise, by Lemma 1 it cannot be on

diagonal t > t′. Because a lies below b on diagonal t, it must lie below both b and c on

diagonal t′. Suppose a and c are diagonally adjacent on some diagonal t′′. Let fp,q = c on

diagonal t′′. Clearly, c must lie above a on diagonal t′′. Because b is diagonally adjacent

to a from above on diagonal t, there is no c on diagonal t (or on any higher numbered

diagonal), for otherwise c would be above b or below a on diagonal t, contradicting Lemma

1. Thus, t′′ < t. Since a = fp+1,q+1 and c = fp,q are diagonally adjacent on t′′ and c B a,

Lemma 4 part (ii) implies that a never appears on column q or any lower numbered

column. Since f`,j = a, we need q < j−1. Since t′′ < t and q < j−1, bundle a = fp+1,q+1

must lie above row `. But recall that Lemma 4 part (i) and f`,j = a B b imply that a

should never appear in the box (strictly) above row ` and (strictly) to the left of column

j, a contradiction.

b

b′

b

b B b′ b′

b

a
a

b

b B a B b′

Finally, we stipulate that any incomplete portions of partial order B are chosen in any
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arbitrary manner without violating transitivity. This and Lemmas 4-6 give us a complete,

transitive, and antisymmetric precedence order B. �

Proof of Theorem 2: Theorem 2 is a corollary to Theorem 1 and Theorem 5 when

Λ is regular and satisfies logrolling. Indeed, logrolling implies weak logrolling, and so, all

complete, transitive, and antisymmetric binary relations over the set of logrolling bundles

are admissible with respect to Λ. Thus, the mediation rule f is efficient, individually

rational, and strategy-proof if and only if f = fB for any B that is complete, transitive,

and antisymmetric over B. �

Proof of Theorem 3:

We start with (1) ⇒ (2). Suppose f satisfies parts (ii) and (iii) of Theorem 1. The

first diagonal contains all the bundles in B, which is the hypotenuse of 4m,1. First,

consider the highest-ranked logrolling bundle on the hypotenuse of 4m,1 and let fr1,r1 =

br1 = max
B

B where 1 ≤ r1 ≤ m. Iteratively applying the adjacency requirement,

starting from the hypotenuse, implies that all the entries on row r1 to the left of entry

fr1,r1 , all the entries on column r1 below entry fr1,r1 and all the entries in between must

fill up with bundle br1 because br1 has the highest rank. Thus, the rectangle <br1m,1 fills up

with br1 . Let <br1m,1 be the first element of the rectangular partition of 4m,1. Note that,

when m ≥ 3, the so-far-unfilled4m,1\<
br1
m,1 consists of at least one triangle (if r1 ∈ {1,m})

and at most two triangles (if r1 /∈ {1,m}).
Next, take an arbitrary triangle 4a,b ∈ 4m,1\<

br1
m,1. Note that either a = r1 and

b = 1, or a = m and b = r1 + 1. Let fr2,r2 = br2 , where r2 6= r1, denote the highest-ranked

logrolling bundle on the hypotenuse of 4a,b. Then iteratively applying the adjacency

requirement, starting from the hypotenuse of 4a,b, implies that all the so-far-unfilled

entries on row r2 to the left of entry fr2,r2 , all the so-far-unfilled entries on column r2

below entry fr2,r2 , and all entries in between must fill up with bundle br2 because br2 has

the highest rank among the bundles on the hypotenuse of 4a,b. Thus, let <br2a,b denote the

second element of the rectangular partition of 4m,1.

Note that the so-far-unfilled set 4m,1\
{
<br1m,1 ∪ <

br2
a,b

}
consists of at least one triangle.

Iterate this reasoning and at each step pick a triangle from the so-far-unfilled subset

of 4m,1 and fill its corresponding rectangle with the highest-ranked bundle on its hy-

potenuse. By the finiteness of the problem, the rectangular partition is obtained in m

steps.

We next show (2) ⇒ (1). Consider a rectangular partition P1 of 4m,1(≡ 41) such

that for any < ∈ P1, a, b ∈ < implies a = b. Let <br1 ⊂ 41 be the rectangle that includes

the entry at the bottom left corner of triangle 41, i.e., fm,1. We construct a precedence

order B as follows. Let br1 have a higher precedence rank than any other bundle on the

hypotenuse of 41. Namely, let br1 B b for all b ∈ B\{br1}. Next consider 41\<br1 which

has a triangular partition P2 that consists of at most two triangles.
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Take an arbitrary triangle 42 ∈ P2 and let <br2 ⊂ 42 denote the rectangle that

includes the entry at the bottom left corner of triangle 42. Then let br2 have a higher

precedence rank than any other bundle on the hypotenuse of 42, i.e., if r2 > r1, then

let br2 B b for all b ∈ {b1, ..., br2−1, br2+1, ..., br1−1}, and if r1 > r2, then let br2 B b for

all b ∈ {br1+1, ..., br2−1, br2+1, ..., bm}. Iterate in this fashion by considering an arbitrary

triangle from the remaining partition 41\{<br1 ,<br2}. At the end of this finite procedure

(consisting of exactly m steps), we obtain a transitive but possibly incomplete strict

precedence order B on B: Consider an arbitrary strict completion of B. It is easy to

verify that the adjacency requirement is compatible with the constructed binary relation

B. Namely, we have f`,j ∈ {f`−1,j, f`,j+1} ⊂ B whenever ` > j, and f`,j = f`−1,j if

f`−1,j B f`,j+1 and f`,j = f`,j+1 otherwise.

Next, we prove (1) ⇒ (3). Suppose that f satisfies the adjacency condition in part

(iii) of Theorem 1. Let bk = max
B`j

B where j < ` and B`j = {bj, ..., b`}. By adjacency,

any entry in the rectangle <bk`,j 3 f`,j must be a bundle from B`j. Because bk has the

highest precedence rank over B`j, adjacency implies fk,j′ = bk for all j ≤ j′ < k and

f`′,j = bk for all k < `′ ≤ `. Thus, f`,j = bk.

Finally, we show that (3) ⇒ (1). Suppose f`,j = max
B`j

B whenever j < `. Clearly

B`j = B(`−1)j ∪B`(j+1). Then max
B`j

B = max
{f`−1,j ,f`,j+1}

B, where we have f`−1,j = max
B(`−1)j

B

and f`,j+1 = max
B`(j+1)

B by (3). Namely, we have f`,j ∈ {f`−1,j, f`,j+1}, and f`,j = f`−1,j

if f`−1,j B f`,j+1 and f`,j = f`,j+1 otherwise. The precedence order B is strict by (3)

because the max operator always has a unique value. If it is not transitive, one can easily

construct a transitive (and complete) precedence order B′ by using the adjacency of f ,

where max
B`j

B = max
B`j

B′ = f`,j for all `, j ∈M with j < `. This completes the proof. �

Proof of Theorem 4: Clearly, a CS rule belongs to the adjacent rules family. To

see that the rank variance of a CS rule is lower than any other member of the adjacent

rules family, we simply consider two cases about the number of possible alternatives.

First, when m is odd, var(bn) = (m + 1)2. For any bn−t, bn+t ∈ B with t < n, we

have var(bn−t) = var(bn+t) = 2( (m+1)
2
− t)2 + 2( (m+1)

2
+ t)2 = (m + 1)2 + 4t2. Thus,

var(bn) < var(b) for any b ∈ B \ {bn}.
Since any member of the adjacent rules family must pick an element of B whenever

there is a mutually acceptable alternative in issue X (by cases (ii) and (iii) of Theorem

1), minimization of rank variance requires that bn B b for any b ∈ B \ {bn}. Also observe

that var(bn) < var(bn−1) < . . . < var(b1) and var(bn) < var(bn+1) < . . . < var(bm).

Thus, minimization of rank variance subsequently requires that bn−1 B . . . B b1 and

bn+1 B . . . B bm. By case (i) of Theorem 1, the outcome for issue X is fixed to oX

whenever there is no mutually acceptable alternative in this issue. Therefore, (oX, yn)

is the rank-variance-minimizing bundle. Note that when m is odd, rank variance of the
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unique CS rule is strictly less than any other member of the adjacent rules family.

On the other hand, when m is even, var(bn) = var(bn) = 1
2
(m2 + (m + 2)2). For any

bn−t, bn+t ∈ B with t < n, we have var(bn−t) = var(bn+t) = 2(m
2
− t)2 + 2( (m+2)

2
+ t)2 =

1
2
(m2 + (m + 2)2) + 4t2. Hence, var(bn) = var(bn) < var(b) for any b ∈ B\{bn, bn}.

Note that we also have var(bn) = var(bn) < var(bn−1) < . . . < var(b1) and var(bn) =

var(bn) < (bn+1) < . . . < var(bm). Then, minimization of rank variance subsequently

requires that either bn B bn or bn B bn together with bn−1 B . . . B b1 and bn+1 B . . . B bm.

By case (i) of Theorem 1, the outcome for issue X is oX and both (oX, yn) and (oX, yn) are

rank-variance-minimizing bundles. Consequently, any one of the four types of CS rules

are rank variance minimizing. Note that when m is even, rank variance of a CS rule is

weakly less than any other member of the adjacent rules family. �

Proof of Theorem 5:

Proof of ‘if’ :

Suppose that Λ is consistent and satisfies weak logrolling, and the mediation rule f

satisfies following:

(i) If ` < j, then f`,j = (oX, y) for some y ∈ Y .

(ii) If ` = j, then f`,j = (x`, ym+1−`).

(iii) (Adjacency) If ` > j, then f`,j ∈ {f`−1,j, f`,j+1} ⊂ B and

f`,j =

 f`−1,j, if f`−1,j B f`,j+1

f`,j+1, oth.

where B is a complete, transitive, and antisymmetric precedence order on B that is

admissible with respect to Λ. Then, we want to prove that f is individually rational,

efficient, and strategy-proof.

It is relatively easy to verify that an adjacent rule f is individually rational: it never

suggests an alternative for an issue that is worse than the outside option of that issue, and

thus, it is individually rational by the regularity of preferences. To show efficiency, first

consider the type profile where both negotiators deem all alternatives acceptable in issue

X. At that profile, an adjacent rule proposes a bundle from the set of logrolling bundles

B. Let us call this bundle b. If instead the negotiators receive another bundle from B at

that profile, one of the negotiators will certainly be worse off. Suppose for a contradiction

that there is another logrolling bundle, say, a in which a is unambiguously better than b

for both negotiators, namely a Ri b for i = 1, 2 and for all admissible preferences Ri. On

the other hand, transitivity of B implies b B a because the adjacent rule f suggests the

bundle b when both a and b are mutually acceptable. Furthermore, because Λ satisfies

weak logrolling and B is admissible with respect to Λ, b B a implies either b R1 a or b R2 a
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for all admissible preferences (as B concatenates negotiators preferences), contradicting

the presumption that bundle a is unambiguously better than b for both negotiators.

At that type profile, if the negotiators receive a bundle with the outside option in issue

X, rather than b, then both negotiators would be worse off because of the deal-breakers

assumption. Finally, if the negotiators would receive any other bundle, say c, which is

neither a logrolling bundle nor a bundle with the outside option in issue X, then there

exists at least one negotiator, i, and an admissible preference ordering, Ri, such that

b Pi c, namely the bundle c makes negotiator i worse off at some admissible preference

ordering. This is true because neither regularity nor the weak logrolling assumption puts

a restriction on how negotiators compare bundle b with c.

Thus, no other bundle makes one negotiator better off without hurting the other

when both of the negotiators deem all alternatives acceptable. We can directly apply

the same logic to all type profiles that the negotiators deem less alternatives acceptable.

Finally, for those type profiles where there is no mutually acceptable alternative in issue

X, in which case the rule suggests (oX, y) for some y ∈ Y \ {oY }, any other bundle will

include an alternative that is unacceptable in issue X by at least one of the negotiators

because their preferences over each individual issue are diametrically opposed. Thus, by

regularity, at least one negotiator would be worse off if f proposes something other than

(oX, y). Hence, the adjacent rule f is efficient.

We next prove that adjacent rules are strategy-proof, but first we establish some facts

about the structure of these rules. Let a = f`,j and b = fr,s be two bundles, namely

bundle a appears on row ` and column j whereas bundle b appears on row r and column

s. We say bundle a appears above (below) bundle b whenever ` < r (` > r). Likewise,

bundle a appears the right (left) of bundle b whenever j > s (j < s).

Given a mediation rule f and a bundle a that appears on the main diagonal, i.e.,

a = fk,k for some k ∈ M , define V (a) to be the value region of bundle a, which is

the submatrix of [f`,j](`,j)∈M2 excluding all the rows lower than row k and all the columns

higher than column k. Namely, V (a) = [f`,j](`,j)∈(Mk,Mk) where Mk = {k, ...,m} and

Mk = {1, ..., k}. Furthermore, if bundle b = fr,r appears on the main diagonal with

r ∈ M and r > k, then V (a) ∩ V (b) = [f`,j](`,j)∈(Mr,Mk) where M r = {r, ...,m}. In the

following figure, the value region of bundle a is region I and III, the value region of

bundle b, V (b), is region II and III, and V (a) ∩ V (b) is region III.

Lemma 6. If the mediation rule f is an adjacent rule that is described in Theorem 1,

then for any two bundles a, b ∈ B

(i) a never appears outside of its value region V (a),

(ii) a and b both never appear in V (a) ∩ V (b), and
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(iii) if both a and b appear on the same column (or row), where a is above b (or a is on

the left of b), then on the main diagonal, bundle a appears above bundle b.

a

column k

row k

b

column r

row r

c
I

IIIII

[f`,j](`,j)∈M2 =

a

b

c

1 2

43

=

Proof. The first claim follows directly from the last two conditions of Theorem 1. The

existence of a complete, transitive, and strict order B on B implies the second claim but

deserves a proof. Suppose first that a and b appear on the same column in region III,

say column s, and a is located above bundle b on this column, namely a is on row ra and

b is on row rb where r ≤ ra < rb ≤ m. Starting from column and row r, i.e., from bundle

b, as we move from column r to column s along the row r, adjacency and transitivity of B

imply that the bundles on the row r are either ranked higher than b (with respect to B)

or equal to b, which includes the bundle fr,s. Now starting from column s and row r, i.e.,

the bundle fr,s, and move toward row ra along column s. Adjacency and transitivity of

B imply that the bundle on the row ra and column s, i.e., the bundle a is ranked higher

than b with respect to B. Namely, a B b must hold.

Continue iterating from where we left off. Starting from column s and row ra, i.e., the

bundle a, as we move from row ra to rb along the column s, adjacency and transitivity

of B imply that all the bundles are either ranked above a or equal to a, including the

bundle at row rb, i.e., b. Thus, we must have b B a, contradicting the fact that B

is strict. If bundle b is above bundle a on column s, then we start the iteration from

fk,k = a. Therefore, a and b cannot appear on the same column in region III. Symmetric

arguments suffice to show that they cannot appear on the same row in region III either.

Therefore, suppose that a and b appear on different rows and columns. With similar

arguments as above, if we start iteration from fr,r = b and go left on the same row

and then go down to bundle a in region III, we conclude that a B b by adjacency and

transitivity of B. However, when we start iteration from fk,k = a and move down the

same column and then go left to bundle b in region III, we conclude that b B a, which

yields the desired contradiction. Hence, either bundle a or b, whichever is ranked first

with respect to B, may appear in region III, but not both.
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The proof of condition (iii) uses (ii). Suppose for a contradiction that a and b appear

on the same column s, where b is above a (i.e., rb < ra) and a appears above b on the

main diagonal. If we refer back to the previous figure, a and b can appear on the same

column with rb < ra only in region III, which contradicts what we just proved above.

We can make symmetric arguments for rows as well.

We are now ready to show that an adjacent rule f = [f`,j](`,j)∈M2 is strategy-proof.

Consider, without loss of generality, deviations of negotiator 1 only. If ` < j, then

A(θx`1 , θ
xj
2 ) = Ø. Negotiator 1 may receive a different bundle by deviating to a type

that is represented by a higher (numbered) row, say θxk1 where k > `. A(θ
xj
2 ) is fixed

because negotiator 2’s type is fixed. Because the negotiators’ preferences over issue X

are diametrically opposed and f is individually rational, the alternative in issue X at

type profile (θxk1 , θ
xj
2 ) will be unacceptable for negotiator 1’s true type, θx`1 . Thus, by

the deal-breakers property, negotiator 1 has no profitable deviation from a type profile

(θx`1 , θ
xj
2 ) with ` < j.

On the other hand, if ` = j, then negotiator 1 can deviate to (1) a lower row and

receive (oX, y), which is worse than f`,i = (x`, ym−`+1) by deal-breakers, or (ii) a higher

row and receive a bundle that suggests an unacceptable alternative in issue X. Thus, the

deal-breakers property implies that negotiator 1 has no profitable deviation in that case

either.

Finally, suppose that ` > j. Let c ∈ B denote the bundle negotiators get under

truthful reporting. If negotiator 1 deviates to a row where f takes the value (oX, y), then

he clearly is worse off, by deal-breakers property. If he deviates to a lower numbered

row and receives, say, bundle a, then a appears above bundle c on the first diagonal, by

the third condition of Lemma 6. Therefore, we must have c B a because f suggests c

at some type profile where both a and c are acceptable and f is an adjacent rule. The

fact that a appears above bundle c on the first diagonal and B concatenates negotiators’

preferences imply that c R1 a for all admissible R1. Thus, there is no profitable deviation

for negotiator 1 by declaring a lower numbered row and getting a instead of c. However,

if he declares a higher numbered row and gets a different bundle, say, b, then c appears

on the first diagonal above bundle b, again by the third condition of Lemma 6. As it

is clearly visible in the last figure, Lemma 6 implies that negotiator 1’s true preferences

must give him the bundle c in region 1 or 2 and the deviation bundle b must be in region 3

or 4 because they cannot coexist in region 3 or 4. However, bundle b includes alternative

xr from issue X, which is an unacceptable alternative for all types that lie above row r,

including negotiator 1’s true type. Thus, by the deal-breakers property, negotiator 1 has

no profitable deviation in that case either. Hence, f is strategy-proof.

Proof of ‘only if’ : Now suppose that Λ is consistent and the mediation rule f

is strategy-proof, efficient, and individually rational. We want to prove that Λ satisfies
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weak logrolling and f satisfies the following:

(i) If ` < j, then f`,j = (oX, y) for some y ∈ Y .

(ii) If ` = j, then f`,j = (x`, ym+1−`).

(iii) (Adjacency) If ` > j, then f`,j ∈ {f`−1,j, f`,j+1} ⊂ B and

f`,j =

 f`−1,j, if f`−1,j B f`,j+1

f`,j+1, oth.

where B is a complete, transitive, and antisymmetric precedence order on B that is

admissible with respect to Λ. Proof of Part (i)− (iii) follows from Theorem 1.

Lemma 7. Order B is admissible with respect to Λ.

Proof. We need to prove that the order B, which we constructed (by using the strategy-

proof, efficient, and individually rational f) is a transitive, antisymmetric, and connected

binary relation that concatenates negotiators’ preferences. We already proved the first

two properties. Connectedness of B is simple. Let all logrolling bundles on diagonal k

of f constitute the set Bk
B. Then by construction of B, it is complete with respect to

adjacency on all Bk
B where k = 1, ...,m. Thus, B is connected.

To show that B concatenates negotiators’ preferences, take any b, b′ ∈ B where b′

is located above b on the first diagonal and b B b′ (symmetric arguments work when

b is located above b′ on the first diagonal). If these two bundles are ever adjacent on

some diagonal, then b B b′ means b is located below b′ on some column, and so by

strategy-proofness we must have b R1 b
′ for all admissible R1’s, as required. If, however,

these two bundles are never adjacent but b B b′ is the result of the transitivity of B,

then adjacency of f , i.e., part (iii), implies that there must exist at least one a ∈ B such

that a appears on the main diagonal above b and below b′, a is adjacent to b on some

diagonal and b B a, and a is adjacent to b′ on some (other) diagonal and a B b′.

Adjacency of a and b and b B a imply that b is located below a on some column,

and so by strategy-proofness we must have b R1 a for all admissible R1’s. Similarly,

adjacency of a and b′ and a B b′ imply that a is located below b′ on some column,

and so by strategy-proofness we must have a R1 b
′ for all admissible R1’s. Thus, by

transitivity of admissible preferences, we have b R1 b
′ for all admissible R1’s, as required.

If there were multiple bundles like a in between b and b′, then we repeat these transitivity

arguments multiple times and reach the same conclusion.

Theorem 1 and Lemma 7 give us a complete, transitive, and antisymmetric precedence

order B that is admissible with respect to Λ. Thus, Λ satisfies weak logrolling. �
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Proof of Theorem 6:

We first show the necessity part. By Theorem 1, f must be an adjacent rule. Let f be

some member of the adjacency family with precedence order B. We invoke the proof of

Theorem 3 to construct the partial order D over B. In particular, construct D such that

it coincides with the partial order B obtained in the proof of part (2)⇒ (1) of Theorem

3, i.e., b B b′ ⇒ b D b′ for any distinct pair b, b′ ∈ B. Furthermore, let D be reflexive,

i.e., b D b for any b ∈ B. In the first step of the construction, suppose some bk1 ∈ B fills

up the first rectangle <bk1 and so let bk1 D b for any b ∈ B, i.e., bk1 has (weakly) higher

D-precedence than any bundle on the hypotenuse of 4m,1 = 41. Moreover, consider the

entries on any row of <bk1 each of which is filled with bk1 . Note that each such entry lies

on the same column with a distinct logrolling bundle from the set Bk11 = {b1, ..., bk1}
that lie weakly above bk1 on the hypotenuse of 41. Because f is strategy-proof, it must

be that bk1 R1 bj for all R1 ∈ Λ(θ1) and all θ1 ∈ Θ1 with xk1 , xj ∈ A(θ1) and j ≤ k1.

Symmetrically, consider the entries on any column of <bk1 each of which is filled with

bk1 . Note that each such entry lies on the same row with a distinct logrolling bundle

from Bmk1 = {bk1 , ..., bm} that lie weakly below bk1 on the hypotenuse of 41. Because

f is strategy-proof, it must be that bk1 R2 bj for all R2 ∈ Λ(θ2) and all θ2 ∈ Θ2 with

xk1 , xj ∈ A(θ2) and j ≥ k1.

In the second step, consider 41\<bk1 which has a triangular partition P2 that consists

of at most two triangles. Take an arbitrary triangle 42 ∈ P2. Let <bk2 ⊂ 42 be the

rectangle that is filled up with bk2 . Then let bk2 have a (weakly) higher D-precedence

than any other bundle on the hypotenuse of 42, i.e., if k2 < k1, then let bk2 D b for all

b ∈ B(k1−1)1 = {b1, ..., bk1−1}, and if k1 < k2, then let bk2 D b for all b ∈ Bm(k1+1) =

{bk1+1, ..., bm}. Without loss of generality, suppose k2 < k1. Consider the entries on any

row of <bk2 . Each such entry lies on the same column with a distinct logrolling bundle

from Bk21 = {b1, ..., bk2}, which lie weakly above bk2 on the hypotenuse of 42. Because

f is strategy-proof, it must be that bk2 R1 bj for all R1 ∈ Λ(θ1) and all θ1 ∈ Θ1 with

xk2 , xj ∈ A(θ1) and j ≤ k2. Symmetrically, consider the entries on any column of <bk2
each of which is filled with bk1 . Note that each such entry lies on the same row with

a distinct logrolling bundle from B(k1−1)k2 = {bk2 , ..., bk1−1} which lie weakly below bk2

on the hypotenuse of 42. Because f is strategy-proof, it must be that bk2 R2 bj for all

R2 ∈ Λ(θ2) and all θ2 ∈ Θ2 with xk2 , xj ∈ A(θ2) and k2 ≤ j < k1.

Iteratively continuing in this fashion, in the third step we consider an arbitrary triangle

from the partition of 41\{<bk1 ,<bk2} and so on. By construction, this procedure leads,

in m steps, to a transitive and antisymmetric partial order D on B that reflexively

concatenates the negotiators’ preferences. Moreover, B is a strict completion of D.

We next show that for any linked set B ⊂ B, the partially ordered set (B,D) is a join-

semilattice. Take an arbitrary linked set B ⊂ B. Given any pair of bundles bk, bk′ ∈ B,
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let bk∨ bk′ ∈ B denote the sup (or the least upper bound) of bk and bk′ under D. To show

that bk ∨ bk′ uniquely exists, it suffices to show that every linked set B`j ⊂ B ⊂ B with

some `, j with 1 ≤ j ≤ ` ≤ m has a unique maximal element, i.e., there exists b ∈ B`j

such that b D b′ for all b′ ∈ B`j and there is no b′ 6= b such that b′ D b. We use the above

geometric construction of D to show that this statement holds. Note that later steps of

the above construction lead to finer partitions of B and any such partition of B consists

of linked sets, e.g., the partition induced at the end of step 1 < k ≤ m is finer than

that induced at any earlier step k′ < k. Let 4r,s with r ≤ j and ` ≤ s be the smallest

triangle that was considered in the above m-step construction that contains B`j on its

hypotenuse (possibly together with other bundles from B\B`j). Such a triangle always

exists since B`j ⊂ B where B forms the hypotenuse of 41. Let H ⊃ B`j be the set of

bundles on the hypotenuse of 4r,s. We claim that when triangle 4r,s is considered in

the above construction, bundle b that fills the bottom left corner of 4r,s belongs to B`j.

Suppose, for a contradiction, that b ∈ H\B`j where b D b′ for all b′ ∈ H. In that case, the

bottom left corner of4r,s contains bundle b which also fills up the corresponding rectangle

<b ⊂ 4r,s. But then, 4r,s\<b contains a triangle whose hypotenuse also contains B`j,

contradicting 4r,s being the smallest triangle containing B`j on its hypotenuse in the

above construction. Hence, b D b′ for all b′ ∈ B`j. Note that B`j\{b} is either a linked

set (when b ∈ {bj, bl}), or consists of two disjoint linked sets. Since B`j was an arbitrary

linked set, any linked set in B`j\{b} also has a unique maximal element and so on. In

particular, given any pair bk, bk′ ∈ B, bk∨bk′ is the maximal element in Bkk′ ⊂ B. Hence,

(B,D) is a join-semilattice.

We finally show the sufficiency part. Suppose Λ admits a partial order D on B

that reflexively concatenates negotiators’ preferences and for any linked set B ⊂ B, the

partially ordered set (B,D) is a join-semilattice. We define the least upper bound (or the

maximal element) of a linked set B ⊂ B as a bundle b ∈ B such that b D b′ for all b′ ∈ B
and let supB denote the least upper bound of B, i.e., supB = {b ∈ B

∣∣∣ b D b′ for all b′ ∈
B}. Since (B,D) is a join-semilattice, supB uniquely exists for all linked B ⊂ B. Let f be

a member of the adjacent family of rules associated with an arbitrary strict completion of

D. Note that all arbitrary strict completions of D lead to the same rectangular partition

of 4m,1. Specifically, sup B has the highest precedence and so the bottom left corner of

41 = 4m,1 contains sup B which also fills up <supB. The hypotenuse of any triangle

42 in 4m,1\<supB is a linked set. The least upper bound of the set of bundles on the

hypotenuse of 42, denoted as sup2 B, has higher precedence than any other bundle on

the hypotenuse of 42. Hence, the bottom left corner of 42 contains sup2 B which also

fills up <sup2 B and so on.

We next argue that f is individually rational, efficient, and strategy-proof. The

argument for individually rationality is identical to that in Theorem 5, since the logrolling
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assumption (or whether negotiators’ preferences are concatenated or not) plays no role

in the proof. The argument for efficiency is also identical to that in Theorem 5, since

no logrolling bundle is unambiguously better than any other logrolling bundle for both

negotiators.

Consider, without loss of generality, negotiator 1 and fix the type of negotiator 2 as

θ
xj
2 . Take a type profile (θx`1 , θ

xj
2 ) with ` < j, for which f chooses outcome (ox, y) for

some y ∈ Y . As in the proof of Theorem 5, by the deal-breakers property, negotiator 1

has no profitable deviation to another type that leads to an outcome that is a logrolling

bundle when her true type is θx`1 , nor does she have a profitable deviation to misreport

her type as θx`1 when revealing her true type leads to an outcome that is a logrolling

bundle. Therefore, take a type profile (θx`1 , θ
xj
2 ) with ` > j, for which f`,j ∈ B. We

refer again to the construction of the rectangular partition induced by an arbitrary strict

completion of D. Let f`,j = bt for some bt ∈ B with 1 ≤ t ≤ m, where bt fills up the

rectangle <bt at some step k of the construction. Clearly, ` ≥ t and j ≤ t. Let 4k be the

triangle that envelopes rectangle <bt at step k. In particular, 4k and <bt share the same

bottom left corner entry. Moreover, ft,t = bt lies on the the hypotenuse of 4k and is also

the top right corner entry of <bt (see Figure 9). Let Bsr be the hypotenuse of 4k where

r ≤ t ≤ s. Note that triangle4t−1,r (which is contained in4k and lies immediately above

<bt) contains bundles only from the set Btr. By construction, bt D b for any b ∈ Btr.

Since D reflexively concatenates negotiators’ preferences, bt R1 bp for all R1 ∈ Λ(θx`1 ) and

all b ∈ Btr. Consequently, type θx`1 cannot profitably mimic a less accepting type θ
xp
1

where p ≤ t. We next consider type θx`1 mimicking a more accepting type. This would

lead to an outcome that is contained in a rectangle below rectangle <bt (see Figure 9).

In particular, the outcome will be from the set Bm(s+1). Recall that f`,j = bt. Since Bsr

is the hypotenuse of 4k, we have ` ≤ s. But then, no bundle in Bm(s+1) is acceptable for

type θx`1 . Hence, f is strategy-proof. �

<bt

<bs+1

br

bt

bs

Btr Bsr

Bm(s+1)

θxt1

θxr1

θx`1

θxr2 θxt2θ
xj
2

Figure 9

69



Proof of Proposition 2: Consider the preference profile (θ1, θ2) = (θxm1 , θym1 , θx12 , θ
y1
2 ).

That is, both negotiators find all alternatives acceptable. Let (x, y) = f(θ1, θ2). Because

negotiators preferences over alternatives are diametrically opposed for each single issue,

there is at least one negotiator i ∈ I and an issue for which negotiator i does not get her

top alternative for that issue. Suppose, without loss of generality, that this negotiator is

1 and the issue is X: that is, x 6= x1. Consider the new profile where only negotiator 1’s

preferences are different, (θ′1, θ2) = (θx11 , θ
y1
1 , θ

x1
2 , θ

y1
2 ).

We claim that f(θ′1, θ2) = (x1, y1). Suppose for a contradiction that f(θ′1, θ2) =

(x′, y′) 6= (x1, y1). I will only show that x′ = x1 because similar arguments also prove

y′ = y1, yielding the desired contradiction. To show x′ = x1, suppose for a contradiction

that oX θx11 x′. Since Λ satisfies DB, (oX, oY ) P1 (x′, y′) for all R1 ∈ Λ(θ′1), and thus

f(θ′1, θ2) = (x′, y′) contradicts with the individual rationality of f . Now suppose for a

contradiction that x′ = oX. Then, since Λ satisfies monotonicity, (x1, y
′) Pi (x′, y′) for

i = 1, 2 and all R1 ∈ Λ(θx11 ) and all R2 ∈ Λ(θx12 ). Therefore, (x′, y′) is an inefficient

bundle at (θ′1, θ2), and thus f(θ′1, θ2) = (x′, y′) contradicts with the efficiency of f . Hence,

we must have x′ = x1.

To conclude, we already know that f(θ1, θ2) = (x, y) and x 6= x1, which implies

x1 θ
xm
1 x. Because y1 is negotiator 1’s best alternative in issue Y , either y = y1 or y1 θ

y1
1 y

is true. In either case, Monotonicity and transitivity of preferences imply (x1, y1) P1 (x, y)

for all R1 ∈ Λ(θ1). Finally, we showed in the previous paragraph that by misrepresenting

her preferences at profile (θ1, θ2), negotiator 1 can achieve the bundle (x1, y1), which is

strictly better than (x, y) for all R1 ∈ Λ(θ1), contradicting the strategy-proofness of f . �

Proof of Theorem 7:

Proof of ‘if ’: The same arguments in the proof of Theorem 4 suffice to verify that

the mediation rule described in Theorem 7 is individually rational and efficient. Lemma

6 also holds in the continuous case. The proof of part (i) of Lemma 6 is straightforward;

given the location of a logrolling bundle a on the main diagonal, f`,j can be a only if

a ∈ B`j, and so, a can never appear outside of its value region V (a). To prove part

(ii), let f`,j = a and fs,r = b and suppose for a contradiction that a, b ∈ V (a) ∩ V (b).

Therefore, we have a, b ∈ B`j ∩ Bsr. The bundle a beats b with respect to B because a

wins over B`j. Likewise, b beats a with respect to B because b wins over Bsr. The last

two observations contradict with the assumption that B is strict. To prove part (iii),

suppose that f`,s = a and fj,s = b where ` < j, whereas a appears below b on the main

diagonal. This is possible only when a, b ∈ V (a) ∩ V (b), contradicting the second part.

Similar arguments prove the claim when bundles a and b are on the same row.

Now we prove that f is strategy-proof. It suffices to consider the deviations of one

negotiator to prove that f is strategy-proof. Take any `, j ∈ [0, 1] such that f(θ`1, θ
j
2) =

f`,j = (oX, y) (see figure 10-a). Deviating from θ`1 does not benefit negotiator 1 if he
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deviates to θs1 where s < j because the outcome of f will not change. However, if

negotiator 1 deviates to some s ≥ j and get some b, we know that b is one of the

logrolling bundles in Bsj. However, all of the bundles in Bsj are unacceptable for type θ`1

of negotiator 1 since ` < s, and so, not preferable to (oX, y) by the deal-breaker property.

θ`1

θj2

B1,`

(oX, y)

b
θs1

Bsj

Figure 10-a

θs1

θ`1

θj2

b

a

BsjB`j

Figure 10-b

Now take any `, j ∈ [0, 1] such that ` ≥ j and f(θ`1, θ
j
2) = f`,j = b ∈ B. Deviating from

θ`1 does not benefit negotiator 1 if he deviates to θs1 where s < j because the outcome

of f would be (oX, y), which is not better than b ∈ B by the deal-breaker property. If

negotiator 1 deviates to some ` > s ≥ j and get some a, then a must appear above b on

the main diagonal (part (ii) of Lemma 6). Logrolling implies that negotiator 1 finds b at

least as good as a at all admissible preferences, and thus, deviating to s is not profitable.

Finally, suppose that negotiator 1 deviates to some s > ` ≥ j and get some a (see

figure 10-b). Therefore, a beats b with respect to B because both a and b are in Bsj and

a is chosen. Thus, a cannot be an element of B`j as b is the maximizer of B over this

set. Thus, a ∈ Bsj \B`j, implying that a is not acceptable for type θ`1, and so, deviating

to θs1 is not profitable by the deal-breaker property. Hence, f is strategy-proof.

Proof of ‘only if’: The same arguments in the proof of Theorem 1 suffice to show

that there must exist some y ∈ Y \ {oY } such that f`j = (oX, y) for all `, j ∈ [0, 1] with

` < j. Consider now for ` ≥ j.

STEP 1 (Adjacency):

Lemma 8. If f is strategy-proof, efficient, and individually rational, then f`,j ∈ B`j for

all ` ≥ j.

Proof. We first show that fkk = (k, 1 − k) ∈ Bkk for all k ∈ [0, 1]. Suppose for a

contradiction that there is some ` ∈ [0, 1] such that f`,` = (x, y) 6= (`, 1 − `), and so

f`,` /∈ B. By individual rationality and the deal-breaker property, we have x = ` because

` is the only mutually acceptable alternative in X at type profile (θ`1, θ
`
2). Next, we

show that f`,k = (`, y) for any k < `. Suppose not, i.e., there is some j < ` such that

f`,j = (x′, y′) 6= (`, y). Individual rationality implies x′ ≤ `, and so, there are three

exhaustive cases we need to consider:
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1. If x′ = ` and y′ ≥ y, then by monotonicity θ`2 profitably deviates to θj2, contradicting

strategy-proofness.

2. If x′ ≤ ` and y′ ≤ y, then by monotonicity θj2 profitably deviates to θ`2, contradicting

strategy-proofness.

3. If x′ < ` and y′ > y, then bundles (`, y) and (x′, y′) are not unambiguously com-

parable, i.e., there exists an admissible preference ordering of negotiator 1 where

the bundle (`, y) is preferred to the bundle (x′, y′) and another admissible ordering

where (x′, y′) is preferred to (`, y). Therefore, type θ`1 would profitably deviate to

θj1, again contradicting strategy-proofness.

Thus, we must have f`,j = (`, y). Given that f`,j = (`, y), symmetric arguments suffice to

prove that fj,j = (`, y) as well, which contradicts individual rationality because ` > j is

not acceptable by type θj1 of negotiator 1. Thus, we have y = 1− `, and so f`,` ∈ B``.

Now consider the case where ` > j and suppose for a contradiction that f`,j =

(x, y) /∈ B. By individual rationality we have x ∈ [j, `]. Moreover, strategy-proofness

implies x = j. Suppose not, i.e., x > j. If y ≥ 1 − j, then there is an admissible

preference ordering of negotiator 1 such that the bundle fj,j = (j, 1 − j) is preferred to

the bundle f`,j = (x, y) by monotonicity, and so type θ`1 would profitably deviate to type

θj1, contradicting with strategy-proofness. On the other hand, if y < 1− j, then bundles

fj,j and (x, y) are not unambiguously comparable, namely there exists an admissible

preference ordering of negotiator 1 where the bundle fj,j is preferred to the bundle f`,j

and another admissible ordering where f`,j is preferred to fj,j. Therefore, type θ`1 would

profitably deviate to θj1, again contradicting strategy-proofness. Symmetric arguments

suffice to prove that strategy-proofness implies x = `, because otherwise negotiator 2

would profitably deviate. The last two claims lead to the desired contradiction because

we must have x = j and x = `, but ` > j. Finally, given that f`,j ∈ B, individual

rationality requires f`,j ∈ B`j.

STEP 2 (Construction of a precedence order): To construct B, we perform the

following pairwise comparison: Let f`,` = a ∈ B and fj,j = b ∈ B for some `, j ∈ [0, 1]

with ` > j and define a B b whenever f`,j = a and b B a whenever f`,j = b. The binary

relation B is asymmetric by definition because the logrolling bundles a and b can appear

on the main diagonal only once. However, it may not be complete. Lemma 9 below shows

that there exists some a and b such that either a B b or b B a.

Lemma 9. Let f be strategy-proof, efficient, and individually rational, and f`,j = a ∈ B

where ` > j. Then there exists some k ≥ j such that fk,k = a and f`,k = a.
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Proof. Given that f`,j = a ∈ B where ` > j, Lemma 8 implies that a ∈ B`j, and so there

is some k ∈ [j, `] such that fk,k = a. To prove the second part, suppose for a contradiction

that f`,k = z where z 6= a. Again by Lemma 8, we know that z ∈ B`k, and so there is

some k′ ∈ [k, `] such that fk′,k′ = z. By the way the logrolling bundles are ranked by

negotiator 2, fk,k = a is preferred to fk′,k′ = z because k < k′. Therefore, given that the

type of negotiator 1 is θ`1, type θk2 of negotiator 2 would profitably deviate to θj2 to get a

instead of z, contradicting strategy-proofness.

Lemma 10. Let f be strategy-proof, efficient, and individually rational. Then the order

B is transitive. That is, for any triple a, b, c ∈ B such that a B b and b B c, we have

¬c B a.

Proof. Suppose for a contradiction that there exists a, b, c ∈ B such that a B b, b B c

and c B a. There are six possible cases to consider regarding how these three bundles

are placed on the main diagonal, and symmetric arguments suffice to prove them all.

Therefore, we present only the proof of one of these cases.

a

b

c

a

c b

θj2 θ`2 θk2

θk1

θj1

θ`1

deviation

d
ev

ia
ti
o
n

Figure 11

Suppose, without loss of generality, that a appears above bundle b and b appears

above bundle c on the main diagonal. (See Figure 11.) Therefore, negotiator 2 prefers a

to b and b to c, and type θj2 finds all three bundles acceptable. Moreover, a B b, b B c and

c B a imply that f`,j = a, fk,j = c, and fk,` = b. Given that negotiator 1 is of type θk1 ,

θj2 would profitably deviate to type θ`2 because b is more preferred than c, contradicting

with strategy-proofness.

Lemma 11. Let f be strategy-proof, efficient, and individually rational, and f`,j = a ∈ B

for some `, j ∈ [0, 1] with ` > j. Then, a B b for all b ∈ B`j with b 6= a.
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Proof. Suppose for a contradiction that there exists some b ∈ B`j with b 6= a such that

b B a. Consider the case where the bundle a is located above the bundle b on the main

diagonal. Symmetric arguments will yield a contradiction when a is located below the

bundle b on the main diagonal. Suppose that fs,s = a and fr,r = b, and so fr,s = b.

Strategy-proofness and individual rationality imply that fr,j = a: This is true because if

fr,j ∈ Bsr \ {a}, then type θ`1 would profitable deviate to θr1, and if fr,j ∈ Bjs \ {a}, then

θr1 would deviate to θ`1, all of which contradict with strategy-proofness. With a similar

reasoning, we must have fr,s = a given that fr,j = a, which contradicts with a 6= b: This

is true because when fr,s ∈ Brs \ {a}, then type θs2 would deviate to θj2, contradicting

with strategy-proofness. Thus, a B b for all b ∈ B`j with b 6= a .

The last lemma proves that a strategy-proof, efficient, and individually rational rule

picks the maximal element of B on B`j for all 0 ≤ `, j ≤ 1 with ` ≥ j. Namely,

f`,j = max
B`j

B for all ` ≥ j. By the Szpilrajn’s extension theorem (Szpilrajn 1930),

one can extend B to a complete order. This extension will clearly preserve the maximal

elements in every compact subset B`j because the maximal elements in every set B`j

already have a complete relation with all the elements in that set. Finally, Theorem 1

in Tian and Zhoub (1995) proves that quasi upper-semicontinuity is both necessary and

sufficient for B to attain its maximum on all compact subsets B`j, which completes the

proof. �
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[5] Barberà, S., Gül, F., and Stacchetti, E. (1993). Generalized median voter schemes and
committees. Journal of Economic Theory, 61(2), 262-289.
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