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Abstract

This paper presents an electromechanical modeling approach for predicting the dynamics of (straight/curved)
functionally graded panels with multiple surface-integrated piezo-patches. Bi-axial material variation is
considered using the theory of mixture approach. The governing equations are derived following the first
order shear deformation theory and the Hamilton’s principle. The derived boundary value problem is solved
numerically using a meshless approach based on Chebyshev polynomials. Mass and stiffness contributions
of piezo-patch(es) as well as two-way electromechanical coupling behavior are incorporated both for modal
and harmonic analyses. To validate the accuracy of the presented solution technique, the results for various
cases are compared to those obtained from finite-element analyses. It is shown that the maximum difference
in the predicted natural frequencies is below 1%, but for a fraction of the computational time. Furthermore,
the harmonic analysis results excellently match FE results. Note that material variation changes the spatial
stiffness of the panel and thus, the functionally graded panel can be designed according to a predefined
objective function using the proposed modeling approach. As a demonstration, specific to energy harvesting
application, the voltage/power output was maximized through material and geometry/shape variations. It
was demonstrated that significant improvements can be achieved through the presented methodology.
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1. Introduction

Functionally graded materials (FGMs) are one of the emerging composite materials used in diverse fields
of engineering such as automotive and aerospace industries [1–4]. FGMs are made from different phases of
material constituents and yields a smooth/continuous transition of material properties; thereby eliminate
problems such as delamination and matrix cracking problems observed in laminated composite structures
[2, 5, 6]. Furthermore, in FGM structures, the material properties such as elastic modulus and density can be
tailored to achieve design requirements by changing the volume fraction of the constitutes and gradation rate
in one or more specific directions [7–13]. Commonly, theory of mixtures [14, 15] or Mori Tanaka [14, 16–18]
approach is used to determine the local effective material properties. In the theory of mixtures, the material
properties of the composite structure is found as a linear combination of the constitute materials, whereas
in the Mori Tanaka approach, the material properties are found using Eshelby’s elasticity solution.
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The use of piezoelectric materials by either embedding into or surface bonding/integration onto structures
as electro-mechanical transducers (both as sensors and as actuators) enhances the structural capabilities.
These smart structures have been used for a wide range of applications such as vibration or buckling control
[11, 19, 20], energy harvesting [21, 22], and shunt damping [23, 24]. More recently, FGM structures used
together with piezo materials have received significant attention to benefit from the unique properties of
both piezo materials and FGMs.

There are many studies in the literature on the piezoelectric materials embedded on plate structures [25–31].
The majority of these studies are focused on the analysis of straight isotropic panels. In one of the earlier
studies, De Marqui et al. [27] presented an electromechanical finite element (FE) model to predict the power
output of plate-like piezoelectric energy harvesters. In their study, the governing equations are obtained fol-
lowing classical plate theory (CPT) and fully covered unimorph piezoelectric energy harvester configuration.
Later, Aridogan et al. [29] predicted electromechanical response of single/multiple piezoelectric patches by
neglecting their mass and inertia contributions. This assumption has been used in many similar studies such
as Darabi et al.’s studies [32, 33] or Yoon et al.’s study [34]; however, note that it may lead to inaccuracy
when piezo patch sizes are comparable to the host plate (i.e. when the electromechanical coupling between
the host plate and the piezo is not weak). Therefore, there is still a need to develop a more generalized
model that can predict the electromechanical coupling of curved structures integrated with patches that
cover the surface of the host plate partially. For instance, Gozum et al. [22] modeled the electromechanical
behavior of surface-bonded piezo patches on a thin plate including the mass and stiffness effects of the
piezo using Heaviside functions with Rayleigh-Ritz approach. More recently, Motlagh et.al. [31] developed
an accurate and computationally efficient modeling framework based on the first order shear deformation
theory (FSDT) and spectral Chebyshev approach which can also predict the response of moderately thick
and doubly-curved panels including the mass and inertia contribution of the piezo-patches.

In the case of smart FGM structures (i.e. FGM structures with embedded/attached piezoelectric lay-
ers/patches), the modeling approach should also be capable of capturing the varying material property of
the structure along the specified directions. Although 3D modeling approaches can accurately capture the
dynamics of the FGM structures, due to the high computational cost, two dimensional (2D) modeling tech-
niques such as equivalent single layer (ESL) [35] and layer-wise (LW) [36] approaches are mostly preferred.
He et al. [26] and Liew et al. [37] developed a finite element (FE) shell model based on CPT for active
control of FGM structures with fully covered or partial piezoelectric layers. Similarly, Mirzaeifar et al. [38]
used FE modeling approach based on CPT and showed that the natural frequency of the FGM structure
can be optimized. Later, Shariyat presented that the dynamic buckling of FGM panels can be controlled
using non-linear FE simulations based on higher shear deformation theories (HSDT) [39, 40]. To increase
the computational efficiency of the FE based modeling approaches, Carrera and Valvano [41] proposed a
variable kinematic model in which ESL and layer-wise approaches are used together. In their study, the
modeling was performed following Carrera Unified Formulation (CUF) and it was shown that static analysis
of multilayered structures can be efficiently performed compared to fully later-wise theories. Later, they
proposed a new class of finite elements to predict the electromechanical dynamics of laminated shells [42].
In this modeling approach, they used a node dependent kinematics in their FE formulation so that their
refined models are used only at certain regions where complex stress and/or strain distributions or strong
electromechanical coupling are observed.

As aforementioned, there are various studies on FGM structures with piezoelectric layers or with surface-
integrated piezo-patches; however the electromechanical modeling is performed based on FE approaches in
most of these studies. In this study, to increase the computational efficiency while preserving the accu-
racy/precision of the results, a meshless solution approach is presented. The model is based on authors’
previous studies [30, 31] where dynamic behavior of a smart (doubly-) curved isotropic host structure in-
cluding piezoelectric patches is studied using FSDT kinematic equations. Here, the modeling approach is
extended to predict the dynamics of a bi-directional FGM host structure with multiple surface-integrated
piezo-patches. The derived governing electro-mechanical equations are solved to obtain mechanical and volt-
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age frequency response functions (FRFs) using a meshless approach based on Chebyshev polynomials. The
efficacy of the solution approach is demonstrated comparing the results to those found using a commercial
FE software. It is also shown that the presented modeling approach can be used to tailor the material
distribution along the selected directions and design the FGM panel to increase the power output in energy
harvesting applications.

2. Problem statement

2.1. Functionally graded (doubly-curved) panel with multiple surface integrated piezo-patches

Figure 1 depicts a (doubly-) curved FGM panel with bi-morph surface-integrated piezo-patches. The dimen-
sions of the panel and piezo-patches are denoted by as, bs, hs and apk , bpk , hpk along x, y, and z directions,
respectively; where subscripts s and pk denotes the host panel and the kth piezo-patch. The curvature
amounts of the base panel are represented by r1 and r2 around x and y directions, respectively. Note that,
the piezo-patches can be connected either in parallel such that all piezo-patches are interconnected and
connected to the same load, or independently where each patch is connected to a separate electrical circuit.
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Figure 1: Schematic of a doubly-curved FGM panel with multiple surface-integrated piezo-patches.

The material variation of the FGM panel is assumed to be along the x and y directions. To define the volume
fraction distributions of the constituent materials (Vmat1 and Vmat2), power-law function [43] is commonly
used as follows:

Vmat1(x, y) =

(
1

2
+
|x|
as

)p(
1

2
+
|y|
bs

)q
(1)

Vmat2(x, y) = 1− Vmat1(x, y) (2)

Here, p and q are the power-law indices that indicates the material variation rate along the x and y directions,
respectively. Following the rule of mixture, the spatial effective material property, χ(x, y), can be predicted
as:

χ(x, y) = χmat1Vmat1(x, y) + χmat2Vmat2(x, y) (3)

where χmat1 and χmat2 are the material properties of the constituent materials such as Young’s modulus
(E), Poisson’s ratio (ν) or density (ρ). Thus, depending on the material variation (i.e. gradation amount
and rate) in the structure, the local compliance of the structure can be tailored.

2.2. Derivation of the boundary value problem

To derive the governing boundary value problem (BVP), Hamilton’s principle is used. Following the FSDT
assumption [31, 44], the kinetic energy of the electro-mechanical system can be written as a summation of
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kinetic energies of the host panel and the piezo-patches:

T =Ts +

n∑
k=1

(Tp)k (4)

where
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(6)

Here, u0, v0, and w0 are the deformations of any point on the neutral surface of the panel along x, y, and
z directions; φx and φy are the rotations around y and x -axes, respectively; and form the deflection vector
q = {u0; v0; w0; φx; φy}; z defines the distance of any point with respect to the neutral surface of the
panel; ρ is the density, V is the volume; n is the number of piezoelectric patches.

Similarly, the potential energy can be written as,

U =Us +

n∑
k=1

(Up)k (7)

where

Us =
1

2

∫
Vs

εT
s σs dVs =

1

2

∫
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qT
s BTCs B qs dVs (8)

(Up)k =

n∑
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1

2
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σpkdVpk −
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}
(9)

=
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1

2
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}

Here, C and B matrices are the constitutive and differential operator matrices that defines the stress-strain
(σ = C ε) and strain-deformation (ε = B q) relations, e and E vectors represent the piezoelectric constants
and the electric field, respectively. The details of the constitutive equations for the host panel and the
piezoelectric patches are given in Appendix A.

Next, the electrical energy can be written using the electro-elastic relations as

Wie =

n∑
k=1

1

2

∫
Vpk

ETD dVpk =

n∑
k=1

1

2

{∫
Vpk

ETe εpkdVpk +

∫
Vpk

ETεSE dVpk

}
(10)

where D is the electric displacements, εS represent the dielectric permittivity.
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Finally, the work done by non-conservative forces can be written as

Wnc =
1

2

∫
V

fTq dV (11)

where f = {fu0
; fv0 ; fw0

; fφx
; fφy
} is the non-conservative force vector.

Inserting the energy terms to the Hamilton’s principle yields the BVP. Spectral Chebyshev approach [31, 44]
is used to numerically solve this BVP. In this approach, first the domains (i.e. the deflections) of the host
panel and the piezo-patches are discretized using Gauss-Lobatto sampling to minimize the effect of Runge’s
phenomenon and improve the computational efficiency simultaneously. Then, the deflection vectors are
expressed as a series of double expansion of Chebyshev polynomials of the first kind. To calculate the
derivative and integral operations in the BVP, differentiation and inner product matrices that are based
on Chebyshev polynomials are derived. The details of the two dimensional spectral Chebyshev approach is
given in Appendix B.

Note that, by performing the integral operation along the z direction analytically, the volume integrals can
be transformed into area integrals. The integral limits along the z direction are (zls , zus) = (−hs/2, hs/2)
for the host structure and (zlp , zup

) = (hs/2, hs/2 + hp) or (−hs/2 − hp,−hs/2) for the top or bottom
piezoelectric patches, respectively. Therefore, the governing differential equations for the electro-mechanical
behavior can be derived in matrix form as:

Ms 0 . . . . . .
0 Mp1 . . . . . .
... . . .

. . . 0
. . . . . . 0 Mpn


︸ ︷︷ ︸

M


q̈s
q̈p1

...
q̈pn

+


Ks 0 . . . . . .
0 Kp1 . . . . . .
... . . .

. . . 0
. . . . . . 0 Kpn


︸ ︷︷ ︸

K


qs
qp1

...
qpn

−


0
θ1

. . .
θn

 v =


fs
fp1
...

fpn

 (12)

Here, M and K are the global mass and stiffness matrices of the structure, θ is the electromechanical
coupling vector, and v is the voltage (note that for the parallel connection, the voltage is the same and
equal to v for all piezo-patches). The explicit expressions for the system matrices and the electromechanical
coupling vector are given in Appendix C.

Similarly, the electrical circuit differential equation for multiple piezo-patch case can be obtained as:

n∑
i=1

θT
i qpi +

n∑
i=1

cpi v̇ + Y v = 0 (13)

where cpi is the individual piezoelectric patch capacitance and Y is the impedance.

Note that the governing equation defined by Eq. (12) is not structurally coupled. Component mode synthesis
approach is used to couple the host panel and piezo-patch dynamics and furthermore to impose the essential
boundary conditions if necessary. Following this approach, the coupling equations and boundary condition
equations can be expressed as

[
βs−p
βBC

]
qs
qp1

...
qpn

 = βqT = 0 (14)

Here, βs−p and βBC matrices include the coupling equations of host panel and piezo-patches, and boundary
equations for the host panel, respectively. The critical point here is that since both the host panel and the
piezo-patches are sampled individually using Gauss-Lobatto discretization to increase the computational
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efficiency, the sampling points of the structures may not coincide. To overcome this issue, the host panel
is resampled using the backward and forward transformation matrices (following the formulation given in
Appendix D) to include the sampling points of the piezo-patches. Thus, the compatibility equations at the
connection boundaries of the host panel and the piezo-patches can be written easily by equating the degrees
of freedom (DOFs) at the coinciding sampling points as follows

A∗
s1 Ap1 0 . . . . . .

A∗
s2 0 Ap2 0

...
...

...
...

. . . 0
A∗
sn 0 . . . 0 Apn




q∗
s

qp1
...

qpn

 = 0 (15)

where q∗
s represents the resampled host panel deformations, A∗

s and Ap are the coupling matrices (whose
elements are 1, -1, or 0), and the superscript ∗ denotes the coupling equations corresponding to the resampled
host panel. Since, the relationship between the original sampling points and the refined sampling points of
the host panel can be written as q∗

s = Γ∗
Bs

ΓFs
qs, the coupling matrix, βs−p becomes

βs−p qT =
[
As Ap

]{qs
qp

}
=


As1 Ap1 0 . . . . . .

As2 0 Ap2 0
...

...
...

...
. . . 0

Asn 0 . . . 0 Apn




qs
qp1

...
qpn

 = 0, where Asi = A∗
siΓ

∗
Bs

ΓFs

(16)

Then, following the basis recombination approach, the projection matrix, P that defines a coordinate trans-
formation as qT = Pqd can be obtained where the particular qd satisfies the governing equations. The size
of the P matrix is NT × (NT −M) where NT is the total number of DOFs and M is the number of rows of
β matrix (i.e., the number of equations in the β matrix).

Based on the linear system assumption, assuming a harmonic excitation as f = f̄o e
iωt and imposing the

effects of coupling and boundary condition matrices to the BVP, Eqs. (12) and (13) yield harmonic deflection
and voltage vectors as qd = q̄do e

iωt and v = v̄o e
iωt. For instance, the harmonic and voltage vectors for the

case of parallel connection can be derived as

q̄do =

{
− ω2M + K−

(
jω

jω
∑N
i=1 cpi + Y

)
PT


0
θ1

. . .
θn

 [θT
1 . . . θT

n

] [
A−1
p As 0

]
P

}−1

PTF (17)

v̄o =

(
−jω

jω
∑N
i=1 cpi + Y

)[
θT

1 θT
2 . . . θT

n

] [
A−1
p As 0

]
Pq̄do (18)

where

M = PTMP and K = PTKP (19)

3. Model validation

This section presents four case studies using the presented modeling approach described in Section 2: cases
(i) and (ii) one piezo-patch on a straight and curved FGM panel, respectively, and cases (iii) and (iv) four
piezo-patches on a straight and curved FGM panel, respectively. The geometries of the base panel and the
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piezo-patches are illustrated in Fig. 2 and listed in Table 1. In the one-patch case, a piezo-patch size of
300× 300 mm is used; whereas in the four-patch case, the piezo-patch in Fig. 2(a) is divided into four equal
parts where the gap between the piezo patches is 6 mm both along the x and y directions. The constituent
materials in the FGM panel are aluminum and magnesium. The material variation is assumed to be along x
and y directions and the power-law indices (p and q) are set to 1. The material properties of the constituent
materials and the piezoelectric material are listed in Table 2.

(a) (b)

(0,0)

(0.2,0.2)

x

y

(0,0) x

y

(0.2,0.2)

(-0.2,-0.2)

Force Location Force Location

Response Location

(-0.2,-0.2)

Response Location

Figure 2: Schematic of the validation case studies: (a) one-patch configuration, (b) four-patch configuration.

Table 1: Geometric properties of host (FGM) panel and piezoelectric patches

Property Base Panel
Piezo-patches

one patch four patch
length (as or ap) [mm] 500 300 147
width (bs or bp) [mm] 500 300 147
height (hs or hp) [mm] 2 0.2 0.2
curvature (as/r2, bs/r1) straight: (0,0) or curved: (0.05, 0.05)

Table 2: Material properties of host (FGM) panel and piezoelectric patches

Property Aluminum Magnesium PZT-5A
Young Modulus [GPa] 69 45 61

shear correction factor π/
√

12 π/
√

12 π/
√

12
mass density [kg/m3] 2700 1770 7750

Poisson’s ratio 0.33 0.33 0.35
piezoelectric constant [C/m2] - - -190
permittivity constant [nF/m] - - 9.57

Prior to validation, the stability and convergence characteristics of the presented solution approach is demon-
strated. Furthermore, the required polynomial numbers along the x and y directions for the host panel and
piezo-patches need to be determined since the accuracy of the solution depends on the number of polynomi-
als. Note that, in the case studies, host panel and piezo-patch geometries are selected to be square (however,
there is no geometry limitation of the presented solution technique); thus the polynomial numbers along
each direction are set equal to each other (N = Nx = Ny). In this convergence analysis, the polynomial
numbers are incrementally increased both for host panel and piezo-patches and the corresponding natural
frequency values are calculated. To assess the level of convergence, the results are compared to a reference
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case where the results are obtained using large polynomial numbers (Ns = 50 and Np = 30). Tables 3 and 4
list the first ten natural frequency values that are obtained for different polynomial values, and the percent
differences with the reference case.

Table 3: Convergence of the first ten natural frequencies for one piezo-patch on a fully-constrained straight FGM panel.

Modes
Ns −Np = 11 − 7 Ns −Np = 15 − 9 Ns −Np = 31 − 11 Ns −Np = 45 − 19 Ns −Np = 50 − 30
(Hz) Diff. (%) (Hz) Diff. (%) (Hz) Diff. (%) (Hz) Diff. (%) (Reference Case)

1 64.56 0.08 64.52 0.03 64.50 0.01 64.50 0.00 64.50
2 138.78 0.37 138.60 0.25 138.34 0.06 138.27 0.01 138.25
3 138.78 0.37 138.60 0.25 138.34 0.06 138.27 0.01 138.25
4 206.46 0.35 206.26 0.26 205.86 0.07 205.74 0.01 205.72
5 255.75 0.66 255.32 0.51 254.33 0.12 254.08 0.02 254.02
6 259.66 0.55 259.26 0.41 258.45 0.10 258.24 0.02 258.19
7 322.81 0.49 322.33 0.36 321.46 0.09 321.24 0.02 321.18
8 322.81 0.49 322.33 0.36 321.46 0.09 321.24 0.02 321.18
9 438.34 5.24 418.10 0.40 416.69 0.07 416.50 0.02 416.42
10 458.90 10.18 418.10 0.40 416.69 0.07 416.50 0.02 416.42

Table 4: Convergence of the first ten natural frequencies for four piezo-patches on a fully-constrained straight FGM panel.

Modes
Ns −Np = 11 − 5 Ns −Np = 15 − 7 Ns −Np = 31 − 11 Ns −Np = 45 − 13 Ns −Np = 50 − 30
(Hz) Diff. (%) (Hz) Diff. (%) (Hz) Diff. (%) (Hz) Diff. (%) (Reference Case)

1 64.87 0.11 64.84 0.09 64.81 0.04 64.79 0.02 64.78
2 139.04 0.45 138.68 0.22 138.47 0.06 138.41 0.02 138.38
3 139.04 0.45 138.68 0.21 138.47 0.05 138.41 0.01 138.39
4 206.17 0.42 205.73 0.22 205.41 0.06 205.31 0.01 205.28
5 260.86 2.63 255.06 0.38 254.46 0.14 254.17 0.03 254.10
6 265.01 2.61 259.06 0.33 258.55 0.13 258.28 0.02 258.22
7 326.24 1.61 321.92 0.28 321.34 0.10 321.07 0.02 321.02
8 326.24 1.61 321.92 0.28 321.34 0.10 321.07 0.02 321.02
9 427.33 2.60 417.85 0.34 416.74 0.07 416.51 0.02 416.43
10 427.33 2.60 417.85 0.34 416.74 0.07 416.51 0.02 416.43

It is clearly shown that the presented solution approach converges very fast as the number of polynomials
are increased. The selection of the required polynomial numbers are performed based on the individual
modes’ error. To have differences less than 0.1% in the first ten modes, the polynomial numbers (Ns −Np)
are selected as 45-19 and 45-13 for one piezo-patch and four piezo-patches cases, respectively.

Next, the modal analysis and harmonic analysis results (natural frequencies, structural and electromechanical
FRFs) of the presented approach are compared to those obtained using a commercial finite element software
(COMSOL v5.5). To calculate the FRFs, an excitation force is applied at (x, y) = (0.2, 0.2) along the
z direction and the response is measured at (x, y) = (−0.2, −0.2) along z direction. Note that a similar
convergence analysis is performed for the FE analysis to determine the sufficient element number. Since the
shell elements do not allow to define the top and bottom electrodes, FE models are constructed using solid
elements.

In the validations analyses, first, the predicted natural frequencies for cases (i-iv) are compared to the FE
results (see Table 5). As shown, the predicted natural frequencies using presented spectral approach and
FE analyses are in excellent agreement; the maximum and average percentage differences are calculated as
0.28 % and 0.12 % respectively. Secondly, displacement and voltage FRFs are calculated using Eqs. (17)
and (18) to validate the electromechanical response of the system. Figure 3 shows the structural and voltage
FRF comparisons for cases (i-iv) assuming open circuit (R=109Ω) condition. As shown, the predicted FRFs
are matching accurately to the FRFs calculated using FE approach.
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Table 5: Comparison of first ten natural frequencies (in Hz) predicted using the presented solution approach and FE analysis
for (i-ii) one piezo-patch on a straight and curved FGM panel and (iii-iv) four piezo-patches on a straight and curved FGM
panel. For each case, the panel is fully-constrained.

one piezo-patch four piezo-patches
straight FGM panel curved FGM panel straight FGM panel curved FGM panel

Present FE Diff. (%) Present FE Diff. (%) Present FE Diff. (%) Present FE Diff. (%)
1 64.50 64.54 0.05 114.96 114.83 0.12 64.81 64.66 0.23 115.86 115.55 0.27
2 138.32 138.33 0.01 157.77 157.77 0.00 138.47 138.40 0.05 158.00 157.86 0.09
3 138.32 138.34 0.01 157.77 157.79 0.01 138.47 138.42 0.04 158.00 157.89 0.07
4 205.83 205.86 0.01 220.09 220.16 0.03 205.40 205.39 0.01 219.57 219.48 0.04
5 254.22 254.30 0.03 265.19 265.36 0.06 254.37 253.71 0.26 265.39 264.70 0.26
6 258.35 258.52 0.07 272.52 272.78 0.09 258.47 257.75 0.28 272.61 271.84 0.28
7 321.38 321.64 0.08 330.92 331.30 0.11 321.26 320.88 0.12 330.81 330.35 0.14
8 321.38 321.67 0.09 330.92 331.35 0.13 321.26 320.91 0.11 330.81 330.39 0.13
9 416.69 417.45 0.18 423.77 424.73 0.23 416.75 417.38 0.15 423.77 424.33 0.13
10 416.69 417.49 0.19 423.77 424.77 0.24 416.75 417.42 0.16 423.77 424.42 0.15
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Figure 3: Comparison of structural and open circuit voltage FRFs for cases (i)-(iv). Cases (i) and (ii) correspond to one
piezo-patch configuration on a straight and curved FGM panel, respectively. Similarly, cases (iii) and (iv) correspond to four
piezo-patches configuration on a straight and curved FGM panel, respectively. The solid red lines are the results predicted
using the presented solution approach, and the dashed blue lines are FE results.
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4. Design of FGM panel

4.1. Effect of material gradation on electromechanical behavior

Depending on the constituent material properties of the FGM panel, the compliance of the structure varies
spatially which significantly affects the performance of piezo-patches. Thus, in this section, the effect
of material variation along x and y directions on voltage (V ) and power (P ) output of piezo-patches is
investigated. Although this investigation can be performed for multiple piezo-patches, to demonstrate the
material variation effects clearly, only single surface-integrated piezo-patch cases are considered. Thus,
using the geometry of case (ii) described in Sec. 3 (curved FGM panel having one piezo-patch), power law
indices defined in Eq. (1) are varied between 0 and 10 with 0.1 resolution. Figure 4 shows the variation
of fundamental natural frequency, open circuit voltage output, and power output with a resistor value of
R = 104 Ω for one piezo-patch attached on a curved FGM panel with respect to a homogeneous panel (i.e.
aluminum panel). It is also observed that, when the lighter material amount is increased, the fundamental
frequency changes slightly (around 4%); however the voltage and power output can increase significantly.
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Figure 4: Effect of power law indices on fundamental natural frequency, open circuit voltage output (amplitude), and power
output (amplitude): (a) ωo/ωoREF , (b) VOC/VOCREF

, and (c) P/PREF.

Note that in the analyses presented in Fig. 4, the power law function given in Eq. (1) leads to a symmetric
material distribution. However, it is also possible to create asymmetric material gradation using a four-
parameter power law distribution (for each direction) using the following equation [45]:

Vmat1(x, y) =

[
1− αx

(1

2
+

x

as

)
+ βx

(1

2
+

x

as

)γx]p[
1− αy

(1

2
+
y

bs

)
+ βy

(1

2
+
y

bs

)γy]q
(20)

where α, β, and γ dictate the material variation profile along x and y directions together with the power-law
indices (p and q). To further illustrate the influence of the material variation on the power output of the
piezo-patches, we performed several analyses using various values of the four-parameters (see Table 6) in
Eq. (20) for a fully-constrained straight and curved FGM panels having the geometry properties described
in cases (i) and (ii) in Sec. 3. For simplicity, the material variation profiles along x and y directions are
assumed to be identical (i.e. αx = αy, βx = βy, and γx = γy), and the power law indices are swept from 0
to 5. The values of power law indices that leads to the maximum power output density for each option is
plotted in Fig. 5. As seen in this figure, the power output density (power/volume of piezoelectric patch) can
be significantly increased (up to 84% and 102% for straight and curved FGM panels, respectively) leveraging
the spatial material distribution of the FGM panel.
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Table 6: Material variation parameters for selected distribution models

Option αx = αy βx = βy γx = γy
1 1 0 -
2 1 0.5 2
3 1 1 2
4 1 1 4
5 0.8 0.2 3

64 64.5 65 65.5 66 66.5 67 67.5
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Figure 5: Effect of material distribution on power output density of a fully-constrained (a) straight and (b) curved (as/r2 =
bs/r1 = 0.05) panel.

4.2. Optimization of material gradation to maximize the harvested power density

As discussed in Sec. 4.1, it is evident that FGM panel can produce more voltage and power compared to
homogenous (isotropic) panel. However, note that the peak location changes due to the change in spatial
stiffness of the panel. In other words, as the volumetric ratio of the lighter and softer material increases, the
fundamental natural frequency of the panel decreases. Despite that, it is possible to increase the power (or
voltage) output of the piezo-patches while setting the peak location at a desired frequency through material
and shape/geometry variations (such as the size of the piezo-patches or thickness of the host panel, etc.).
Therefore, in this case study, an optimization simulation is performed using the genetic algorithm toolbox in
MATLAB to maximize the power output density of the piezo-patch. The design variables are selected to be
the parameters (α, β, γ, p, and q) in Eq. (20) and the size of the square piezo-patch (ap = bp). Maximizing
the power density (power/volume of piezoelectric patch) near the first natural frequency of the isotropic
cases (±0.2%) is considered as the objective function. The constraints used in the optimization software are
as follows:

0 ≤ α ≤ 1; 0 ≤ β ≤ 1; 0 ≤ γ ≤ 4; 0 ≤ p ≤ 5; 0 ≤ q ≤ 5 (21)

0 ≤
[
1− αx

(1

2
+

x

as

)
+ βx

(1

2
+

x

as

)γx]
≤ 1; ∀x

0 ≤
[
1− αy

(1

2
+

y

as

)
+ βy

(1

2
+

y

as

)γy]
≤ 1; ∀y

270mm ≤ ap = bp ≤ 330mm

In the analyses, we used the geometries of cases (i) and (ii) defined in Sec. 3 for a fully-constrained straight
and curved FGM panel, respectively. The genetic algorithm results are compared to the homogeneous panel
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Figure 6: Comparison of penalty values for cases (i) and (ii).

results to assess the improvements in power output density of the piezo-patches. To find the optimal material
distribution parameters and the size of the piezo-patch as well as the penalty value, the population size is
assumed as 200. Figure 6 shows the comparison of the penalty values for cases (i) and (ii) as function of the
generation numbers.

It is seen that after 30 generations the maximum power density converges. The optimal material parameter
values and piezo patch sizes are listed in Table 7 and the corresponding power densities at the fundamental
frequencies are plotted in Fig. 7 for straight and curved panels. Note that, introducing curvature to the
panel, the stiffness is significantly increased leading to smaller deformations compared to straight/flat panels.
As a result, the harvested voltage or power levels are smaller compared to straight panels. As observed in
Table 7 and Fig. 7, significant increases in power and voltage output can be achieved through optimizing the
material and shape/geometry variation both for straight and curved FGM panels. For instance, 174% and
134% improvements can be obtained for cases (i) and (ii) compared to the maximum power density values
obtained for homogeneous panels.

Table 7: Optimal parameters for cases A and B

Case p q αx αy βx βy γx γy
ap = bp max. power density imp.
[mm] [W/m3N] (%)

(i) 0 0 - - - - - - 300 1.03 -
(i) - optimal 4 4 0.5 1 0.2 0.3 1 4 270 2.82 174
(ii) 0 0 - - - - - - 300 0.903×10−2 -
(ii) - optimal 0 4 - 0.5 - 0.4 - 3 270 2.11×10−2 134

5. Conclusion

In this study, we presented a spectral modeling approach to accurately predict the electro-mechanical be-
havior of (doubly-) curved FGM panels integrated with multiple piezo patches. The governing equations is
derived following the Hamilton’s principle where the strain and kinetic energies are obtained using FSDT.
To impose the material variation, power law distribution is selected and the spatial material properties are
predicted using theory of mixtures. Component mode synthesis approach is used to express the compat-
ibility equations. Then basis recombination approach is followed to couple the piezoelectric patches and
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Figure 7: Effect of material distribution on power output density of a fully-constrained (a) straight and (b) curved (as/r2 =
bs/r1 = 0.05) panel. The dotted (blue) and solid (red) lines represent the homogenous (isotropic) panel with as = bs = 300mm
and optimized FGM panel and piezo-patch size (see Table 7 for the optimized values for the parameters of four-parameter
power law distribution equation and size of the square piezo-patch).

the host structure. The numerical solution of the governing equations is performed via spectral Chebyshev
approach.

To demonstrate the accuracy of the solution approach in predicting the natural frequencies and struc-
tural/voltage frequency response functions, several case studies are performed for straight and curved FGM
panels with single/multiple piezo-patch configurations. The predicted results are validated comparing them
to those obtained using COMSOL. It is shown that the results are in excellent agreement both for the
predicted natural frequencies and voltage/displacement FRFs.

Next, it is shown that the material variation in the FGM panel significantly affect the voltage and power
output of piezo-patches. However, depending on the material properties of the constituent materials, the
peak location of the voltage FRFs may change. Therefore, in the last case study, it is demonstrated that
the developed design framework can be utilized to maximize the power/voltage output of the piezo-patches
through material and geometry/shape variations. Based on the investigated case studies, improvements (in
terms of the maximum power density) up to 134% can be achieved using the FGM panels compared to
the homogenoues (isotropic) ones. This result highlights the importance of considering material variation
parameters and geometry/shape parameters as design variables to maximize the power and voltage output
at any desired/targeted frequency.

Appendix A. Constitutive equations

The constitutive matrix for the host panel defines the relationship between the stresses and the strains
(σ = C ε) and can be expressed in terms of Lamé parameters (λ and µ) as

Cs =


λ ν λ 0 0 0
ν λ λ 0 0 0
0 0 µ 0 0
0 0 0 k2µ 0
0 0 0 0 k2µ

 (A.1)

where ν is the Poisson’s ratio and k is the shear correction factor (taken as π/
√

12). In the case of piezoelectric
patches, the constitutive equations are defined using electro-elastic relations as[

σ
D

]
=

[
CE
p −eT

e εS

] [
ε
E

]
(A.2)
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Here, cEijp ’s (i.e. the elements of CE
p matrix) are the reduced elastic moduli for piezoelectric patches at

constant electric field, e = {ē31; ē31; 0; 0; 0} is the vector of piezoelectric constants, D is the piezoelectric
displacement vector and E is the vector of electric field term.

Appendix B. Two-dimensional Chebyshev approach

Appendix B.1. Chebyshev expansion and domain discretization

Any function, f(x), can be expressed using Chebyshev polynomials as

f(x) =

N∑
k=1

akTk−1(x) (B.1)

Here, T ’s are the Chebyshev polynomials of the first kind [46], ak’s are the expansion coefficients, N is
the polynomial number. Since, there is a one-to-one mapping between the functions values at the sampling
points and the expansion coefficients, it is possible to define a relation between the sampled function’s values
and the expansion coefficients as

a = ΓF y or y = ΓB a (B.2)

where ΓF and ΓB are the (N ×N) forward and backward transformation matrices [47].

However, the deflection terms are functions of both x and y in the derived governing equations given in
Eqs. (12) and (13). Thus, after the problem domain is first discretized using Gauss-Lobatto sampling
approach, we need to use double-expansion of Chebyshev polynomials as

qkl =

Nx∑
k=1

Ny∑
l=1

aqiTk−1(x)Tl−1(y), (B.3)

Here, Nx and Ny are the polynomial numbers used along x and y directions, respectively. To represent the
deflection terms in a vector form, a tensor-to-vector mapping operation (i = (k−1)Ny + l) is applied. Thus,
after the discretization process, the deflection vector can be written as

uo =
[
I 0 0 0 0

]
q = Iu q (B.4)

vo =
[
0 I 0 0 0

]
q = Iv q (B.5)

wo =
[
0 0 I 0 0

]
q = Iw q (B.6)

φx =
[
0 0 0 I 0

]
q = Iφx q (B.7)

φy =
[
0 0 0 0 I

]
q = Iφy q (B.8)

where I and 0 are (NxNy ×NxNy) identity and zero matrices, respectively; and Iqi is the (NxNy × 5NxNy)
operator matrix.

It is possible to derive a similar relationship as given in Eq. (B.2), for the double expansion case given in
Eq. (B.3) [48]. Following a similar tensor-to-matrix mapping operation, the transformation matrices that
are obtained for each direction can be used to obtain the extended (NxNy ×NxNy) forward and backward

14



transformation matrices as

�Bc1c2
= ΓxBk1k2

ΓyBl1l2
(B.9)

c1 = (k1 − 1)Ny + l1, c2 = (k2 − 1)Ny + l2 (B.10)

k1 = 1, . . . , Nx k2 = 1, . . . , Nx (B.11)

l1 = 1, . . . , Ny l2 = 1, . . . , Ny (B.12)

Appendix B.2. Differentiation in Chebyshev domain

The spatial derivative of a function, f(x), can also be expressed by a series expansion of Chebyshev poly-
nomials. We can write a relationship between the coefficients of the original function and its derivative as
b = Dx a, where b is the coefficient vector for the derivative of the original function and Dx is the derivative
matrix. However, since the problem domain is two-dimensional, following the aforementioned mapping for
transformation matrices, extended derivative matrices with respect ot x and y can be obtained as follows

Dxc1c2 = Dx
k1k2 and Dyc1c2 = Dx

l1l2 (B.13)

c1 = (k1 − 1)Ny + l1, c2 = (k2 − 1)Ny + l2 (B.14)

k1 = 1, . . . , Nx k2 = 1, . . . , Nx (B.15)

l1 = 1, . . . , Ny l2 = 1, . . . , Ny (B.16)

Note that the derivative matrices defines a relationship between the coefficients of the function and its
derivative. Thus, using the extended forward and backward transformation matrices, differentiation matrices
(Qx and Qy) that defines the functions values and its derivative at the sampling points can be derived as

q,x = �Bb = �BD
xa = �BD

x�F q = Qx q (B.17)

q,y = �Bb = �BD
ya = �BD

y�F q = Qy q (B.18)

Note that the differentiation can be calculated exactly if the function can be expressed exactly using Cheby-
shev polynomials [47].

Appendix B.3. Integration in Chebyshev domain

The integral operation of a function, f(x), is performed using based on the definite integral vector, v, as∫ l

0

y(x)dx =

N∑
1

ak

∫ l

0

Tk−1(x)dx = vTa (B.19)

Similar to derivative operation, if the function can be expressed exactly using N Chebyshev polynomials,
the integral operation can be computed exactly.

In the case of integral operation that includes multiplication of multiple functions, inner product approach is
used. For instance, the integral operations defined in energy equations of host panel includes three functions
since the material properties vary spatially; whereas there are two functions in energy equations of piezo-
patches (see Section 2.2). Following the inner product matrix approach [47–49], the integral operations can
be calculated as ∫

f(x, y)g(x, y)dxdy = fT Vg (B.20)∫
r(x, y)f(x, y)g(x, y)dxdy = fT Vr g (B.21)
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where f(x, y) and g(x, y) represent the deflection terms, r(x, y) represents the varying material property
functions, V and Vr are the inner product and weighted inner product matrices, respectively.

Appendix C. System matrices

Following the spectral Chebyshev approach, the system matrices and the electromechanical coupling vector
in Eq. (12) can be derived as:

Ms =

[
hs

(
ITus

VρsIus + ITvsV
ρ
sIvs + ITws

VρsIws

)
+
h3
s

12

(
ITφxs

VρsIφxs
+ ITφys

VρsIφys

)]
(C.1)

Ks = BT
s VsChs

Bs (C.2)

Mpk =

{
2ρp

[(
h3
p

3
+
h2
php

4
+
hshp

2

)(
ITφxp

VpIφxp
+ ITφyp

VpIφyp

)
+ hp

(
ITup

VpIup
+ ITvpVpIvp + ITwp

VpIwp

)]}
k

(C.3)

Kpk =
(
BT
p VpChpBp

)
k

(C.4)

θk =

[(
hp + hs

2

)(
εT
xxp

Vpe31 + εT
yypVpe31

)]
k

(C.5)

where Chs
and Chp

are the linear elastic constitutive matrices that includes the thickness term, h as a result
of the analytical integration along z direction. For instance, for the host panel, the stiffness matrix can be
explicitly written as

Ks = h

{
ITus

QT
xs
VλsQxsIus +

1

r1
ITus

QT
xs
Vλs Iws +

1

r1
ITws

VλsQxsIus +
1

r2
1

ITws
Vλs Ius +

h2

12
ITφxs

QT
xs
VλsQxsIφxs

+ ν

(
ITus

QT
xs
VλsQysIvs +

1

r2
ITus

QT
xs
Vλs Iws +

1

r2
ITws

VλsQysIvs +
1

r1r2
ITws

Vλs Iws +
h2

12
ITφxs

QT
xs
VλsQysIφys

+ ITvsQ
T
ysV

λ
sQxs

Ius
+

1

r1
ITvsQ

T
xs
Vλs Iws

+
1

r2
ITws

VλsQxs
Ius

+
1

r1r2
ITws

Vλs Iws
+
h2

12
ITφys

QT
ysV

λ
sQxs

Iφxs

)

+ ITvsQ
T
ysV

λ
sQysIvs +

1

r2
ITvsQ

T
ysV

λ
s Iws

+
1

r2
ITws

VλsQysIvs +
1

r2
2

ITws
Vλs Iws

+
h2

12
ITφys

QT
ysV

λ
sQysIφys

+ ITus
QT
ysV

µ
sQysIus + ITus

QT
ysV

µ
sQxsIvs + ITvsQ

T
xs
VµsQysIus + ITvsQ

T
xs
VµsQxs

Ivs

+
h2

12

(
ITφxs

QT
ysV

µ
sQysIφxs

+ ITφxs
QT
ysV

µ
sQxs

Iφys
+ ITφys

QT
xs
VµsQysIφxs

+ ITφys
QT
xs
VµsQxs

Iφys

)
+ k2

[
1

r1

( 1

r1
ITus

Vµs Ius − ITus
VµsQxsIws − ITus

Vµs Iφxs
− ITws

QT
xs
Vµs Ius

− ITφxs
Vµs Ius

)
+ ITws

QT
xs
VµsQxs

Iws
+ ITws

QT
xs
Vµs Iφxs

+ ITφxs
VµsQxs

Iws
+ ITφxs

Vµs Iφxs

+
1
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( 1

r2
ITvsV
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s Ivs − ITvsV

µ
sQysIws

− ITvsV
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s Iφys

− ITws
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ysV
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s Ivs − ITφys

Vµs Ivs
)

+ ITws
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ysV

µ
sQysIws

+ ITws
QT
ysV

µ
s Iφys

+ ITφys
VµsQysIws

+ ITφys
Vµs Iφys

]}
(C.6)
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Appendix D. Structural coupling of the host panel and the piezo-patches

To structurally couple the base panel and the piezo-patches, compatibility equations need to be written at
the connection boundaries. For that purpose, it is possible to refine the sampling points of the host panel
such that the refined sampling points will coincide the sampling points of the piezo-patches as shown in
Fig. D.8.

Connection Boundaries

(a) (b) (c)

Base plate Base plate with piezo-patches

Piezo-patch

Figure D.8: Sampling point refinement for structural coupling of the host panel and the piezo-patches: (a) Gauss-Lobatto
sampling of the host panel, (b) Gauss-Lobatto sampling of the piezo-patches, and (c) refined sampling points of the host panel.
Blue dots represent the original sampling points of the base panel, red dots show the sampling points of the piezo-patches, and
black dots are the refined sampling points of the base panel.

Using the (extended) forward and backward transformation matrices, a relation between the original and
refined sampling points of the base panel can be written as:

q∗
s = Γ∗

Bs
as = Γ∗

Bs
ΓFsqs (D.1)

Here, Γ∗
Bs

is the (NxNy)s × (NxNy)s refined extended transformation matrix.
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[13] J. S. Moita, A. L. Araújo, V. F. Correia, C. M. Mota Soares, J. Herskovits, Material distribution and sizing optimization
of functionally graded plate-shell structures, Composites Part B: Engineering 142 (2018) 263–272.

[14] F. Tornabene, N. Fantuzzi, M. Bacciocchi, The local GDQ method applied to general higher-order theories of doubly-
curved laminated composite shells and panels: The free vibration analysis, Composite Structures 116 (1) (2014) 637–660.

[15] A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, C. M. M. Soares, Static, free
vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear
deformation theory and a meshless technique, Composites Part B: Engineering 44 (1) (2013) 657–674.

[16] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta
Metallurgica 21 (5) (1973) 571–574.

[17] S. S. Vel, R. C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal
of Sound and Vibration 272 (3-5) (2004) 703–730.
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[36] M. D’Ottavio, D. Ballhause, B. Kröplin, E. Carrera, Closed-form solutions for the free-vibration problem of multilayered
piezoelectric shells, Computers and Structures 84 (22-23) (2006) 1506–1518.

[37] K. M. Liew, X. Q. He, T. Y. Ng, S. Kitipornchai, Active control of FGM shells subjected to a temperature gradient via
piezoelectric sensor/actuator patches, International Journal for Numerical Methods in Engineering 55 (6) (2002) 653–668.

[38] R. Mirzaeifar, H. Bahai, S. Shahab, Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator
pairs, Smart Materials and Structures 17 (4).

[39] M. Shariyat, Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent
material properties under thermo-electro-mechanical loads, International Journal of Mechanical Sciences 50 (12) (2008)
1561–1571.

[40] M. Shariyat, Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material
properties subjected to thermo-electro-mechanical loading conditions, Composite Structures 88 (2) (2009) 240–252.

[41] E. Carrera, S. Valvano, Analysis of laminated composite structures with embedded piezoelectric sheets by variable kine-

18



matic shell elements, Journal of Intelligent Material Systems and Structures 28 (20) (2017) 2959–2987.
[42] E. Carrera, S. Valvano, G. M. Kulikov, Electro-mechanical analysis of composite and sandwich multilayered structures by

shell elements with node-dependent kinematics, International Journal of Smart and Nano Materials 9 (1) (2018) 1–33.
[43] S.-H. Chi, Y.-L. Chung, Mechanical behavior of functionally graded material plates under transverse load - Part I: Analysis,

International Journal of Solids and Structures 43 (13) (2006) 3657–3674.
[44] M. R. Anamagh, B. Bediz, Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene

platelets using spectral Chebyshev approach, Composite Structures 253 (July) (2020) 112765.
[45] F. Tornabene, Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with

a four-parameter power-law distribution, Computer Methods in Applied Mechanics and Engineering 198 (37-40) (2009)
2911–2935.

[46] D. Gottlieb, S. A. Orszag, Numerical Analysis of Spectral Methods, Theory and Applications, SIAM-CBMS, Philedelphia,
PA, 1977.

[47] B. Yagci, S. Filiz, L. L. A. Romero, O. B. Ozdoganlar, A spectral-Tchebychev technique for solving linear and nonlinear
beam equations, Journal of Sound and Vibration 321 (1-2) (2009) 375–404.

[48] B. Bediz, A spectral-Tchebychev solution technique for determining vibrational behavior of thick plates having arbitrary
geometry, Journal of Sound and Vibration 432 (2018) 272–289.

[49] G. Serhat, B. Bediz, I. Basdogan, Unifying lamination parameters with spectral-Tchebychev method for variable-stiffness
composite plate design, Composite Structures 242 (June 2019) (2020) 112183.

19


