The line and the translate problems for *r*-primitive elements

Giorgos Kapetanakis

University of Crete, Heraklion, Greece

Let q be a prime power and $n \geq 2$ an integer. We denote by \mathbb{F}_q the finite field of q elements and by \mathbb{F}_{q^n} its extension of degree n. An element of $\mathbb{F}_{q^n}^*$ of order $(q^n - 1)/r$, where $r \mid q^n - 1$, is called *r*-primitive, while, if r = 1, we simply call it primitive.

If θ is a generator of the extension $\mathbb{F}_{q^n}/\mathbb{F}_q$, i.e., is such that $\mathbb{F}_{q^n} = \mathbb{F}_q(\theta)$, then

$$\mathcal{T}_{\theta} := \{\theta + x \, : \, x \in \mathbb{F}_q\}$$

is the set of translates of θ over \mathbb{F}_q and, if $\alpha \in \mathbb{F}_{q^n}^*$,

$$\mathcal{L}_{\alpha,\theta} := \{ \alpha(\theta + x) : x \in \mathbb{F}_q \}$$

is the *line* of α and θ over \mathbb{F}_q . It is known that, given n, if q is large enough, every set of translates and every line contain a primitive element, while effective versions for these existence results are known for just a few small values of n.

In this work, we extend these existence results to r-primitive elements and we provide effective results for the case r = n = 2.

This work is still in progress and is in collaboration with Stephen D. Cohen.