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Abstract

We have studied the characterization of binomial ideal attached to a combinatorial

object polyomino. We reviewed the papers of Ayesha Asloob Qurehsi mentioned in

the references [8], [9], [12] and [13].
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Introduction

Polyominoes are two dimensional figures which are originally rooted in recreational

mathematics and combinatorics, and extensively discussed in connection with tiling

problems of the plane. A polyomino is plane figure obtained by joining squares of

equal sizes, which are known as cells. In other words, a cell is a unit square of R2

whose corners are elements in N2, and a polyomino is a finite union of cells. The first

connection of polyominoes with commutative algebra appeared in [13] by assigning

each polyomino the ideal of its inner 2-minors or the polyomino ideal.

To each polyomino P ⊂ N2, we attach an ideal IP as follows. Let K be a field

and S be the polynomial ring over K in the variables xa with a ∈ V (P). To each

proper interval [a, b] of N2, we assign the binomial fa,b = xaxb − xcxd, where c and

d are the anti-diagonal corners of [a, b]. A proper interval [a, b] is called an inner

interval of P if all cells of [a, b] belong to P. The binomial fa,b is called an inner

2-minor of P , if [a, b] is an inner interval of P . We denote by IP ⊂ S the ideal

generated by the inner 2-minors of P and by K[P ] the quotient ring S/IP .

A collection of cells P is called a polyomino if it is a connected collection of

cells which means that for any two cells A,B ∈ P there exists a sequence of cells

C1, . . . , Cm with C1 = A, Cm = B, and for all i, the cells Ci and Ci+1 have an edge

in common.

In Chapter 2, we introduce some basic concepts related to collection of cells. In

particular we introduce column convex, row convex and convex collection of cells.

The first main result in this direction is stated in Section 2.3 where it is shown
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that K[P ] is a normal Cohen–Macaulay domain of dimension |V (P)| − |P|, if P is

convex. We define for any collection of cells P a natural toric ring TP and a natural

K-algebra homomorphism K[P ] → TP .

In the same chapter, We gave a result from the paper of Qureshi that IP is

prime ideal if P is a simple collection of cells. Roughly speaking P is simple if

it is connected and has no holes, see Section 2.1 for the precise definition. In the

Chapter 3 we study a case of non simple polyomino with prime ideal and in Chapter 4

we study the Gröbner basis of our binomial ideal. The main result in this direction

is that the set of inner 2-minors of P form a reduced Gröbner basis under the certain

conditions on polyomino, see Theorem 4.1.1.
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Chapter 1

Preliminaries

This chapter comprises of some basic concepts that we will use in next chapters. In

this dissertation all rings considered are commutative and K denotes field.

1.1 Binomial ideals

Definition 1.1.1. Assume we have a field K and K[x1, . . . , xn] be a ring of poly-

nomials in n variables, denoted by S. The product of the form xa1
1 · · · xan

n is called

a monomial in S, where ai ∈ N. If s = xa1
1 · · · xan

n , then we write s = xa, with

a = (a1, . . . , an) ∈ Nn.

The set of all monomials in S is denoted by Mon(S). It is well known that

the ring of polynomials S has a structure of K-vector space and Mon(S) forms the

K-basis of S. Therefore, any polynomial g ∈ S can be uniquely written as

g =
∑

xa∈Mon(S)
cax

a where ca ∈ K.

Moreover, the set

supp(g) = {xa ∈ Mon(S)|ca ̸= 0}

is called support of the polynomial g.
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Example 1.1.2. For a field K, g(y, z) = yz + y3z2 − yz4 ∈ K[y, z] and supp(g) =

{yz, y3z2, yz4}.

An ideal I ⊂ S generated by monomials in S, is called a monomial ideal. In

all the ideals of ring S, the monomial ideal have a main role because they have

natural connection with many combinatorial objects such as graphs and simplicial

complexes.

Definition 1.1.3. A polynomial g in S is a binomial if g is of the form g = cax
a −

cbx
b with ca, cb ̸= 0. An ideal I ⊂ S is called binomial ideal if it is generated by

binomials in S. For example, the ideal J = (x2y − y3z, xyz4 − x3y3) ∈ K[x, y, z] is

a binomial ideal. Binomial ideals are well studied in detail in [14].

1.2 Toric ring and defining ideal

It is a well known fact about monomial ideal that it is a prime if it is generated by

variables. However, classification for arbitrary prime ideal in a ring of polynomials

is a hard problem. In case of binomial ideals, it is known that they are prime if and

only if they are defining ideals of a toric ring.

Let A be an affine semigroup of Zn generated by {a1, a2, . . . , an}, that is

A = Na1 + Na2 + . . .+ Nan.

Then ui = xai are the generators of subring K[A] of Laurent polynomial ring T =

K[x±
1 , . . . , x

±
n ] and K[A] is a K-subalgebra of the polynomial ring S = K[x1, . . . , xn].

Let R = K[t1, . . . , tn] be another polynomial ring and we define ϕ : R −→ K[A]

the K−algebra homomorphism defined as ti 7→ ui for i = 1, . . . , n. Clearly ϕ is

surjective so, K[A] ∼= R/Kerϕ. The ideal J is called the toric ideal or defining ideal

of A.

The most distinguish property of toric ideal is that they are generated by binomials.

In particular, they are prime binomial ideals, e.g. see [4].
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Definition 1.2.1. Let us consider a commutative ring R and m is the maximum

length of regular sequence in maximal ideal of R, this m is called the depth of ring

R. The number of inclusion of a chain of prime ideals in a ring R is called the length

of chain. e.g. a chain of prime ideals in R, Q0 ( Q1 ( ... ( Ql has length l. We

define the Krull dimension of ring R to be the supremum of the lengths of all chains

of prime ideals in R. In general for any ring we have depth of ring is less or equal to

the dimension of ring and the ring R is called Cohen-Macaulay if its depth is equal

to its dimension.

Example 1.2.2. The following are examples of Cohen-Macaulay ring.

1. Ring of integers Z.

2. The ring K[x]/(x2).

1.3 Gröbner basis of binomial ideal

In 1965, Bruno Buch-berger developed the theory of Gröbner basis for polynomial

rings and he named them after his advisor Wolfgang Gröbner. This theory has be-

come fundamental field in algebra. An intensive research on this theory is developed

e.g see [4].

Definition 1.3.1. Let S be a ring of polynomials, a total order ≤ on Mon(S) with

the properties:

• 1 ≤ t for all monomials t in S.

• if t < u and v ∈ Mon(S), then tv < uv.

is called a monomial order.

Examples 1.3.2. Let u = yc, v = yd be two monomials in S, where c = (c1, . . . , cn)

and d = (d1, . . . , dn) are vectors in Zn
+. The variables are ordered as y1 > y2 > . . . >

yn in all the followings monomial orders.
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Degree lexicographic order: u < v, if either
n∑

k=1
ck <

n∑
k=1

dk or
n∑

k=1
ck =

n∑
k=1

dk,

and the left most non-zero component of c − d is less than zero.

Pure lexicographic order: in this monomial order u < v, if from the left side the

first nonzero of c − d is less than zero.

Degree reverse lexicographic order: u < v, if either
n∑

k=1
ck <

n∑
k=1

dk or
n∑

k=1
ck =

n∑
k=1

dk, and the right most nonzero element of c − d is positive.

Definition 1.3.3. Let < a monomial order on S. for 0 ̸= g ∈ S, we set in<(g) to be

the largest monomial s in the support of g with respect to <, and call it the initial

monomial for g. The coefficient c of in<(g) is called the leading coefficient of g with

respect to monomial order <, and c in<(g) is called leading term of g. Now we are

able to define initial ideal. Let I ⊂ S be a nonzero ideal. The initial ideal of I is

the monomial ideal

in<(I) = (in<(f)|f ∈ I, f ̸= 0).

A sequence g1, ..., gm of elements in I with in<(I) = (in<(g1), ..., in<(gm)) is called a

Gröbner bases of I w.r.t. the monomial order <.

Note that every ideal I ⊂ S has Gröbner basis because in<(I) is finitely gener-

ated. Here we give some important properties of in<(I) as below. In Section 3.3 of

[6], there is comparison of in<(I) and the ideal I is given in detail.

Theorem 1.3.4. [4, Theorem 3.3.4] Let I ⊂ S be a graded ideal and < a monomial

order on S. Then

1. dim(S/I) = dim(S/in<(I))

2. proj dim(S/I) ≤ proj dim(S/ in<(I))

3. reg(S/I) ≤ reg(S/ in<(I))

4. depth(S/I) ≥ depth(S/ in<(I))

5. S/I is Cohen-Macaulay ⇒ S/ in<(I) is Cohen-Macaulay.

6



Theorem 1.3.5. [4, Macaulay Theorem] Let < be a monomial order on S and let

I ⊂ S an ideal. Then the monomials in S which do not belong to in<(I) form a

K-basis of S/I.

For an ideal I, every set of generators not need to be a Gröbner bases. While

the converse of this statement is true as given in the following theorem.

Theorem 1.3.6. [4, Theorem 2.8] Let I ⊂ S be an ideal and G = {g1, . . . , gm} be

a Gröbner basis of I with respect to a monomial order <. Then G is a system of

generators of I.

Now we will write an algorithm to find the Gröbner basis of ideal I ⊂ S. To

explain this criterion we have to introduce the S-polynomials first. Suppose we

have J = (g, h) ∈ S, while g, h ̸= 0. Now we want to compute Gröbner bases of

J . Certainly in<(g), in<(h) ∈ in<(J). A candidate of a polynomial f ∈ J whose

initial monomial does not belong to (in<(g), in<(h)) is a linear combination of g and

h such that their initial terms cancel. This leads to define

S(g, h) = lcm(in<(g), in<(h))
c in<(g)

g − lcm(in<(g), in<(h))
d in<(h)

h

where c is the leading coefficient of g and d is the leading coefficient of h. The

polynomial S(g, h) is called the S-polynomial of g and h with respect to <. The

following theorem gives us idea to get Gröbner basis with the help of S-polynomial.

Theorem 1.3.7. [4, Theorem 2.14] Let < be a monomial order on S, and let

I = (g1, . . . , gm) be an ideal in S with gi ̸= 0 for all i. Then the following conditions

are equivalent:

(a) g1, . . . , gm is a Gröbner basis of I with respect to <.

(b) S(gi, gj) reduces to 0 with respect to g1, . . . , gm for all i < j.

Checking whether a set of generators h1, . . . , hm of an ideal is a Gröbner bases

can be rather cumbersome since we have to compute the remainder of
(

m
2

)
S-

polynomials. The proposition given below is often used to lessen the manipulation

appropriately.
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Proposition 1.3.8. [4, Proposition 2.15] S-polynomial of g and h reduce to zero

if their initial monomials are relatively prime w.r.t. a monomial order <.

1.3.1 Buchberger’s criterion

Assume I to be an ideal of the ring S with a finite generating set, say H. The

Buchberger algorithm is the following:

Step 1: For every distinct pair in H we compute the S−polynomial and correspond-

ing remainder.

Step 2: If the remainder of all these such polynomials is 0 then the algorithm ter-

minates and H is so called Gröbner basis of I, else one of the non-zero remainders

is affixed in our system, this obtained system of generators can again be called H

and reiterate.

This algorithm does terminate after finite steps. Indeed, each time when we add

a nonzero remainder of an S-polynomial to H, the initial ideal of H becomes strictly

larger.

Definition 1.3.9. Assume that S has an ideal J . Then the Gröbner basis H =

h1, . . . , hm is called reduced Gröbner basis of J w.r.t. <, if it satisfy the following:

(i) the leading coefficient of each hi is 1;

(ii) for all i ̸= j no u ∈ supp(hj) is divisible by in<(hi).

Theorem 1.3.10. [4, Theorem 2.17] Each ideal I ⊂ S has a unique reduced

Gröbner basis.

Definition 1.3.11. Let J be a toric ideal. A binomial xa−xb ∈ J is called primitive

if xc − xd /∈ J such that xc|xa and xd|xb.

It can be noted that if xa − xb is a primitive binomial, then the monomials xa

and xb have disjoint supports.

8



Proposition 1.3.12. [4, Proposition 5.8] Let J be a toric ideal and G the reduced

Gröbner basis of J w.r.t. <. Then any binomial of G is primitive.

Proof. Let u = xa − xb ∈ G with in<(u) = xa. Since G is reduced, it follows that

xb /∈ in<(J). Assume that there exist a binomial v = xc − xd ∈ J, u ̸= v, such

that xc|xa and xd|xb. If in<(v) = xc, then we must have xc = xa. It will follow

that v′ = xb − xd ∈ J and in<(v′) = xb since xd|xb, a contradiction. Therefore

in<(v) = xd, which is again contradiction since xd|xb.

1.4 Lattice basis ideal

A well known class of binomial ideals is known as lattice ideals. In the following

text, we give definition and some known facts about lattice ideals.

Definition 1.4.1. Let A be a commutative group and b1, ..., bm ∈ A be distinct

elements in A. Then ϕ : Zm → A defined by ei 7→ bi is a group homomorphism and

the subgroup L = Kerϕ ⊂ Zm is a lattice in Zm. The lattice ideal IL ⊆ K[y1, . . . , ym]

associated to L is the ideal

IL = (ys − yt | s, t ∈ Nm with s − t ∈ L)

Example 1.4.2. Here L is sublattice of Z3 and IL ⊂ K[s, t, u] is a lattice ideal.

1. L = Z{(4, 5, 6)}, IL = ⟨s4t5u6 − 1⟩, A = Z2

1.5 Edge ring of bipartite graphs and their defin-

ing ideals

To begin with this, lets recall some basic definitions from graph theory.

9



Definition 1.5.1. A graph G is defined by its vertex set, say [m] = {1, . . . ,m} and

of edge set E(G).

Each edge is a subset e ⊂ [n] with exactly two distinct elements. In Figure 1.1,

v1

v5

v6

v7

v4

v3

v2

Figure 1.1: A simple graph with 7 vertices

there is a graph on seven vertices v1, v2, v3, v4, v5, v6, v7 and the edges of this graph

are {v1, v2}, {v1, v5}, {v1, v4}, {v2, v3}, {v2, v5}, {v3, v4}, {v4, v7}, {v6, v7}, {v5, v6}.

Definition 1.5.2. A subgraph W of a graph G with the edge set

E(W ) = {{i0, i1}, {i1, i2}, . . . , {ir−1, ir}} ⊂ E(G), where i0, i1, . . . , ir are vertices of

G. A walk W is closed if ir = i1. A cycle is a closed walk where the vertices

i0, i1, . . . , ir−1 are pairwise distinct. A path in G is a walk with pairwise distinct

vertices.

v1

v3

v2

v4

Figure 1.2: A walk in G
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Figure 1.2 is a walk for figure 1.1. this can be seen that it is a closed walk and

hence it is cycle too.

Definition 1.5.3. A graph is called bipartite if its vertex set can be partionized into

two non-empty disjoint sets V1 and V2 such that any edge of G connects a vertex of

V1 to a vertex of V2.

v
1

v v

ww w w w
1

2

2

3

3 4 5

Figure 1.3: Bipartite graph

In figure 1.3, the graph is bipartite graph with two vertex sets V1 = {v1, v2, v3}

and V2 = {w1, w2, w3, w4, w5}.

Proposition 1.5.4. [16] For a graph G, G is bipartite ⇔ cycles of G have even

length.

Proof. Consider a bipartite graph G with V1 and V2 the partition of vertices of G.

So according to definition every edge of G joins the vertices of V1 to the vertices of

V2. Let {v0, v1, . . . , vm} be a cycle with v0 = vm. We may assume that v0 ∈ V1 then

v1 ∈ V2 and v2 ∈ V1. According to this sequence of vertices it follows that vi ∈ V1 if

and only if i is even. Hence the length of the cycle must be even.

Now, assume that we have a graph G in which every cycle is even. We can also

assume that G is connected. Now choose v0 ∈ V (G) and set

V1 = {v ∈ V (G) : the shortest path between v0 and v is even}, V2 = V (G)\V1

11



It follows that no two vertices of Vi are adjacent for i = 1, 2, because there is no

cycle in G which have odd length. Hence G is bipartite.

Definition 1.5.5. Let G be a graph on the edge set [n] and let S = K[x1, . . . , xn]

be the polynomial ring. For each edge e = {i, j} ∈ E(G) we associate the monomial

xe = xixj ∈ S. Let E(G) = {e1, . . . , em} be the edge set of G. The semigroup ring

K[G] = K[xe1 , . . . , xem ] is called the edge ring of graph G.

12



Chapter 2

Polyominoes and Polyomino Ideals

2.1 Cells and their combinatorics

In this section, we define cells and some basic definitions related to cells. To do so,

first we recall the natural partial order defined on N2 defined as: for any c, d ∈ N2

with d = (k, l) and c = (i, j), we say c ≤ d iff j ≤ l and i ≤ k. With this notation,

if c ≤ d, then the set [c, d] = {e ∈ N2| c ≤ e ≤ d} is named as an interval of N2.

The interval [c, d] is a proper if j < l and i < k. The notches of this proper

interval [c, d] are the elements (k, j), (k, l), (i, l), (i, j) and (i, l). We call the elements

(k, l), (i, j) the diagonal corners of [c, d], whereas the elements (k, j), (i, l) are named

as the anti-diagonal corners of [c, d]. Also, c and d are in horizontal position if j = l,

and c and d are in vertical position if i = k.

A cell D is a unit interval in N2, that is, D = [c, d] is a cell if d = c + (1, 1). The

corners of D, denoted by V (D) are called the vertices of D. If we name e and f , the

anti-diagonal vertices of D, then the set E(D) = {{c, e}, {f, d}, {e, d}, {c, f}} is the

edge set of D. A cell D with lower left corner e = (m,n) belong to a proper interval

[c, d] of N2 if

j ≤ n ≤ l − 1 and i ≤ m ≤ k − 1. (2.1)

13



where d = (k, l), c = (i, j). If one of the inequalities in (2.1) is an equality then the

cell D is called a border cell of interval [c, d]. Let (k, l) and(i, j) be the lower left

corners of two cells D and E correspondingly. Then the set,

[D,E] =: {F : F ∈ N2 with lower left corner (m,n), for j ≤ n ≤ l, i ≤ m ≤ k}

is called cell interval. The cell interval [D,E] is called a vertical or horizontal cell

interval if (k, l) and (i, j) are in vertical or horizontal position respectively.

Let we have a finite collection of cells P in N2. The set V (P) = ∪
C∈P

V (C) is

vertex set and E(P) = ∪
C∈P

E(C) is the edge set of P . If v ∈ V (P) is a vertex of

four different cells of P , then v is named as an interior vertex. The set int(P) =

{v ∈ V (P) : v is interior vertex}, is called interior of P . The boundary of P is the

set V (P)\ int(P) and denoted by ∂P . For a collection P as shown in Figure 2.1,

the bold dots are interior while all other belong to int of P .

•
• •

•

Figure 2.1:

P is called row convex if [C,D] ⊂ P for all C,D ∈ P such that [C,D] is a

horizontal cell interval. Similarly, P is column convex if [E,F ] ⊂ P for all E,F ∈ P

such that [E,F ] is a vertical cell interval. If P is row convex as well as column

convex, then P is called convex. Figure 2.1 shows a convex collection of cells and

the collection of cells P in Figure 2.3 is row convex but not column convex.

Two cells A and B in P are called weakly connected cells if there exist cells

A = J1, . . . , Jm = B such that Ji ∩ Ji+1 ̸= ∅ for i = 1, . . . ,m− 1, and they are said

to be connected if Ji ∩ Ji+1 is particularly an edge. If in a P all cells are connected,

then P is a polyomino, e.g. see Figure 2.3.
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A B

Figure 2.2: Weakly connected collection of cells

Figure 2.3: Polyomino

For any finite collection of cells, I = [c, d] ⊂ N2 is a proper interval of N2

such that vertices of P are contained in interior of I. A polyomino is simple if

any cell C of [a, b] which is not in P is connected to a border cell D of [a, b] by a

path C = J1, . . . , Jm = D such that Ji /∈ P for all i = i, . . . ,m. For example see

Figure 2.4.

Non-simple Simple

Figure 2.4:
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Let P1,P2, . . . ,Pm be connected components of a P . We attach a graph H to P

with V (H) = [m] and {j, l} ∈ E(H) if Pj ∩ Pl ̸= ∅. Here we list all combinatorial

properties of finite collection of cells and in particularly polyomino given in [13].

1. Let P be a weakly connected and convex collection of cells, and let a, b ∈ V (P)

be two vertices which are in horizontal or vertical position. Then [a, b] ⊂ V (P).

2. Let P be a weakly connected and convex, and [g, h] be a proper interval in N2.

If the corners of [g, h] belong to V (P), then the cells of [g, h] belong to P .

3. Let P be a simple polyomino and P1 and P2 be two connected components of

P . Then |P1 ∩ P2| ≤ 1.

4. If P is a weakly connected and simple collection of cells then the associated

graph G is a tree graph.

2.2 Polyomino ideals

Let P be a polyomino and S be the ring of polynomials over a field K whose vari-

ables are indexed by vertices in P , that is, S = K[xu : u is a vertex of P]. For every

proper interval [c, d] of N2, there is a binomial fc,d = xcxd − xexf , where e and f

are antidiagonal vertices of [c, d]. If all the cells of [c, d] ∈ P , then [c, d] is called an

inner interval of P and the binomial fc,d associated to [c, d] is called inner 2-minor

of P . The ideal IP = ⟨fa,b|[a, b] is an inner interval⟩ ⊂ S is called polyomino ideal.

The quotient ring S/IP attached to P is denoted by K[P].

The interesting question here is: For which classes of polyominoes, the associ-

ated ring K[P ] is a domain? In other words, we want to find out the classes of

polyominoes, the attached polyomino ideals are prime. The prime monomial ideals

are well understood and have a precise characterization. They are the ones which

are generated by variables. However, understanding the primality of binomial ideal
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is a hard question. As mentioned in chapter 1, a binomial ideal is prime if and

only if it is a toric ideal of a suitable toric ring. As a first attempt to study the

primness of polyomino ideal, in [13] it was shown that for a convex polyomino, the

polyomino ideal can be seen as a toric ideal. In fact it was shown thatfor a convex

polyomino, the polyomino ideal is same as toric ideal of an edge ring of a bipartite

graph. Later on, this concept was generalized to the case of a simple polyomino

in [12]. In the following text, we explain that how one can develop a connection

between a polyomino ideal and a suitable bipartite graph.

2.3 Convex polyominoes and their associated bi-

partite graphs

Assume that P is a polyomino and [c, d] ⊂ N2 is the smallest interval such that

vertices of P are contained in [c, d]. We may assume that c = (1, 1) and d = (m,n).

We attach a bipartite graph to P as follows. Let H be a bipartite graph with

bipartition of vertices given as {s1, . . . , sm} ∪{t1, . . . , tn}. Then {sj, tl} ∈ E(H) iff

(j, l) ∈ V (P). The edge ring K[H] attached to H is given by

K[H] = K[sjtl : (j, l) ∈ E(H)] ⊂ K[s1, . . . , sm, t1, . . . , tn].

With the identification of each vertex of P as an edge H, the toric ring K[H]

can also be presented as,

K[H] = K[sjtl(j, l) is a vertex of P ] ⊂ K[s1, . . . , sm, t1, . . . , tn].

Let φ : S → R be a K-algebra homomorphism such that xjl → sjtl, for all (j, l)

from vertex set of P . We denote the toric ideal Ker(φ) by JP . The ideal JP is well

studied, for example see [11], [16]. To be able to describe the generators of JP , we

first give the following definitions.

C ⊂ V (H) is a cycle, if C = {si1 , tj1 , si2 , tj2 , . . . , sir−1 , tjr−1 , sir , tjr} such that

{sik
, tjk

} and {tjk
, sik+1} belongs to E(H) for each k = 1, . . . , r. The cycle C is
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called an even cycle if |C| is even. To a given cycle C in G, we associate a binomial

fC = xi1j1xi2j2 . . . xir−1jr−1xirjr − xi2j1xi3j2 . . . xirjr−1xi1jr . It is known that the toric

ideal JP attached to K[H] is generated by those fC for which C is an even cycles ,

see [11, Lemma 1.1] and [16, Proposition 8.1.2].

With the identification of each vertex of P with an edge of the bipartite graph

G, we observe the following fact. Each inner minor of P correspond to a cycle of

length 4 in G. From this fact, we see that IP ⊂ JP . Note that in general, IP ̸= JP .

The interesting question that arise here is that for which polyominoes do we have

IP = JP , because this equality gives us the class of polyomino where the attached

ideal is prime. In [13], it is shown that this equality hold if P is a convex polyomino.

The details are given in following

Theorem 2.3.1. [13, Theorem 2.2] If P is a convex polyomino. Then S/IP is a

normal and Cohen-Macaulay domain of dimension |V (P)| − |P|. In particular, if P

is weakly connected and [c, d] is the smallest interval such that V (P) ⊂ [a, b]. Then

K[P ] is a Cohen-Macaulay domain with dimK[P ] = size([c, d]) + 1.

Proof. Let P1, . . . ,Pq be the components of P . Then V (P) =
q⊔

i=1
V (Pi) and IP =

q∑
i=1

IPi
. So, K[P ] is a Cohen-Macaulay and normal domain iff every K[Pi] is. We

may consider that P is weakly connected. From [13] it follows that IP = JP . Hence,

K[P ] = S/IP is domain, since IP is prime. We know from [16, Proposition 8.1.2]

and [11, Lemma 1.1] that universal Gröbner basis of JP are generated by binomials

that corresponds to even cycles of graph G attached to P . Which shows that in<(IP)

is square-free w.r.t. any monomial order <. Then by using the theorem by Strumfles

[15] and [1, Theorem 6.3.5] we obtain that K[P ] is normal and Cohen-Macaulay.

Since, |V (P)| − |P| =
q∑

i=1
|V (Pi)| − |P| and K[P ] ∼= K[G], where K[G] is edge ring

of bipartite graph attached to P . So we can use [16, Corollary 8.2.13], which states

that dimK[G] is cardinality of vertex set of G difference 1 for connected bipartite

graph G.
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Let I = [c, d] ⊂ N2 be the smallest interval such that V (P) ⊂ I. We may as-

sume that c = (1, 1) and d = (m,n), then size([c, d]) = m + n − 2. So with the

identification of edge ring of G with K[P ] that V (G) = {s1, . . . , sm} ∪ {t1, . . . , tn}.

Therefore dimK[P ] = (m+ n) − 1 = size([c, d]) + 1.

Now only remain to show that |V (P)| − |P| = size([c, d]) + 1. We will use mathe-

matical induction to prove this. When P is consist of one column then the formula

is true. Now let R be the cells after removing the right most column Q of R,

and [c′, d′] be the smallest interval such that V (R) ⊂ [c′, d′]. Suppose that Q has

t number of cells which are sharing edge with the cells of R and r number of re-

maining cells in Q. Then |V (P)| = |V (R)| + 2r + t + 1, |P| = |R| + r + t and

size([c, d]) = size([c′, d′]) + r + 1.

2.4 Simple polyominoes are prime

Firstly, let’s recall the definition for simple polyomino. Let P be a polyomino and

let I = [a, b] be an interval of N2 such that P ⊂ I. A polyomino P is simple if for

any cell C not belonging to P there exist a path of cells C = C1, C2, . . . , Ck = D

with Ci /∈ P for i = 1, 2, . . . , k such that D is not cell of I. Roughly speaking, a

simple polyominoes are those polyomino which do not allow any holes. One can

easily see that a convex polyomino is also a simple polyomino because the convexity

of a convex polyomino does not not allow any holes in it. In [12] and [7], it is proved

IP is prime for simple polyominoes. In particular, in [7], the proof of primality of

convex polyomino was extended to the cases of simple polyomino. Before stating

this result, we give some related definitions.

Assume P is a polyomino. An interval [c, d] with d = (k, l) and c = (i, j) is

called a horizontal edge interval of P if the sets {r, j} for r = i, . . . , j − 1 are edges

of P and j = l. A horizontal edge interval is maximal if it is not contained in any

other horizontal edge interval of P . Similarly, we define vertical edge interval and

maximal vertical edge interval.
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Let {V1, . . . , Vm} and {H1, . . . , Hn} be the set of maximal vertical and horizontal

edge intervals of P respectively. We attach to P a bipartite graph H(P), with set

of vertices {v1, v2, . . . , vm} ⊔ {h1, h2, . . . , hn} such that {vi, hj} is an edge in G(P)

for (i, j) = Vi ∩Hj ∈ V (P).

V1

V2
V3

V4

V5

H1

H2

H3

H4

Figure 2.5: Maximal intervals of P

h1 h2 h3 h4

v1 v2 v3 v4 v5

Figure 2.6: Associated bipartite graph of P

Let S = K[xjl where (j, l) is a vertex of P ] be a ring of polynomials over a field

K as before. We will write xj,l for xVp∩Hq , whenever Vp ∩Hq = {(j, l)} To each cycle

C : vj1 , hl1 , vj2 , hl2 , . . . , vjr , hlr in H(P) we associate the following binomial

fC = xj1l1xj2l2 · · · xjrlr − xj1l2xj2l3 · · · xj1lr

A sequence of vertices CP = a1, a2, . . . , ap in V (P) with a1 = ap is called cycle of P

if it satisfy:
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• [aj, aj+1] is a horizontal or vertical edge interval of P∀j = 1, 2, ..., p− 1.

• for j = 1, 2, ..., p if [aj, aj+1] is a vertical edge interval then [aj+2, aj+3] is a

horizontal edge interval and vice versa. Here, ap+1 = a2.

If each maximal interval of P has maximum two vertices of CP , then CP is

primitive. A cycle CP : a1, a2, . . . , am, a1 in P has a self crossing if there are j, l such

that aj, aj+1 ∈ Vp and al, al+1 ∈ Hq with Vp ∩ Hq ̸= ∅. In this case vp, hq is edge of

G(P) which gives us a chord. Similarly if CP is a cycle in P having no self crossing

then area bounded by edge intervals [ai, ai+1] and [ar, a1] for i = 1, 2, . . . , r− 1. The

following lemma is a main tool to prove that simple polyomino are prime. In order

to prove this lemma we recall from chapter 1 that graph is weakly chordal if G has

always chord in every cycle which has length greater than 4. We set,

K[H(P)] = K[vjhl : (j, l) = Vp ∩Hq ∈ V (P)] ⊂ T = K[v1, v2, . . . , vm, h1, h2, . . . , hn].

Let ψ : S → T be a K−algebra surjective homomorphism as xjl � vphq. The toric

ideal of K[H(P)] is denoted by JP . It is known from [11] that binomials associated

with cycles in G(P) generate JP .

Lemma 2.4.1. [12] Let P be a simple polyomino then the bipartite graph G(P)

associated to P is weakly chordal.

Proof. Let G(P) is a bipartite graph associated to simple polyomino P . Let C :

vi1 , hj1 , vi2 , hj2 , . . . , vir , hjr be a cycle of length 2n. If n = 1, 2 nothing is to prove,

so consider n ≥ 3. Also assume that C has no self crossing it implies that C has a

chord.

Consider the associative primitive cycle CP : Vi1 ∩Hj1 , Vi2 ∩Hj1 , Vi2 ∩Hj2 , . . . , Vir ∩

Hjr , Vi1 ∩Hjr . We can write a1 = Vi1 ∩Hj1 , a2 = Vi1 ∩Hj2 , a3 = Vi2 ∩Hj2 , . . . , a2r−1 =

Vir ∩ Hjr , a2r = Vi1 ∩ Hjr . By the definition of CP assume that a1, a2 are in same

horizontal edge interval and am, a1 are in a single vertical edge interval.

Firstly, we will show that int(CP) is in P . For this, assume we have a cell D ∈ CP

such that D /∈ P . Let L ⊂ N2 with P ⊂ L. Since P is simple, so there exists a path
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of cells C = C1, C2, . . . , Cp with Cj /∈ P for j = 1, 2, . . . , p and Cp is a boarder cell

of L. This gives us that,

V (C1) ∪ V (C2) ∪ . . . ∪ V (Cm)

intersect at least one of the [ai, aj+1] for j = 1, 2, . . . , r − 1 or [ar, a1], which con-

tradicts that CP is a cycle in P , hence D belongs to P . This shows that interior

intervals of CP are contained in inner intervals of P .

Let M be a inner interval of CP which is maximal and a1, a2 ∈ M. Consider c, b

are the corner of M and assume that a1, b are vertices on diagonal and a2, c are

antidiagonal vertices. Since a1, a2 ∈ V (CP), and if c, b ∈ V (CP) then length of cycle

C is 4 since CP is primitive.

Suppose c /∈ V (CP) and H ′ be a maximal horizontal edge interval such that c, d ∈ H ′.

As M is maximal inner interval, so it gives that H ′ ∩ V (CP) ̸= ϕ. For example see

Figure 2.7 and 2.8.Therefore, {vi1} is a chord in C.

I

a1 a2

b cH
′

Figure 2.7: When b, c ∈ V (CP)

a1 a2

b c

I

H
′

Figure 2.8: When b /∈ V (CP)

Theorem 2.4.2. [12] Let P be a simple polyomino then, IP = JP .

Proof. First we will show that IP ⊂ JP . Let f = xijxkl −xilxkj ∈ IP . Then we have

Vp, Vq and Hr, Hs maximal horizontal and vertical edge intervals in such a way that
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(i, l), (i, j) ∈ Vp, (k, l), (k, j) ∈ Vq, (k, j), (i, j) ∈ Hr and (k, l), (i, l) ∈ Hs. It gives

that ψ(xijxkl − xilxkj) = vphrhsvq − vphshrvq, which implies that f ∈ Ker(ψ) = JP .

Hence, IP ⊂ JP .

Now we have to show that JP ⊂ IP . It is known from [11] and [10] that JP

is generated by quadratic binomials associated to cycles of length 4 for a weakly-

chordal graph. So it is sufficient to prove that fC ∈ IP in order to prove JP ⊂ IP .

Assume we have an interval M in such a way that all the cells of P are contained in

M and C : h1, v1, h2, v2. Then the associative primitive cycle in P is CP : H1∩V1, H2∩

V1, H2 ∩ V2, H1 ∩ V2. We may assume a11 = H1 ∩ V1, a21 = H2 ∩ V1, a22 = H2 ∩ V2

and a12 = H1 ∩ V2. As shown in the proof of above lemma CP determine an interval

in K. Let a11 and a22 be the diagonal vertices of K. Now we need to show that

K = [a11, a22] is an inner interval.

Contrarily, suppose that K is not an inner intrval, then there is cell E of K which

do not belong to P . So, we have a path of cells E = E1, E2, . . . , Ep with Ej /∈ P for

j = 1, 2, . . . , p and Dp is a border cell of K. Then

V (D1) ∪ V (D2) ∪ . . . ∪ V (Dm)

cuts minimum one the maximal intervals V1, V2, H1, H2, say V1 which contradicts the

fact that V1 is an edge interval. Hence K is an inner interval of P and fC ∈ IP .

Corollary 2.4.3. [12] Let P be a simple polyomino. Then K[P ] is Koszul and a

normal Cohen-Macaulay domain.

A polyomino ideal may be prime even when the polyomino is not simple. In the

upcoming chapter we discuss some certain cases where polyomino ideal is prime for

a non simple polyomino.
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Chapter 3

The case of nonsimple

polyominoes

3.1 polyomino with one hole

As we have seen in previous section that polyomino ideal associated to simple poly-

omino is prime. Here in this section we discuss a case where the ideal is prime but

polyomino is non-simple. We will use some terminology in the following theorem.

Let’s define these terminology here. Let I ⊂ N2 be an interval. Then cells of I form

a polyomino and we write is as PI . The B(P) is the collection of all boundary cells

of P .

Theorem 3.1.1. Let I ⊂ N2 be an interval and P a convex polyomino which is

sub polyomino of PI . Let Pc = PI\P and suppose that P is a polyomino. Then

the polyomino ideal IPc is a prime ideal.

Proof. Here we have two possibilities when B(P) ∩B(PI) ̸= ∅, the polyomino Pc is

a simple polyomino, see figure 3.2 and the ideal IPc is already a prime ideal. So we

may assume that B(P) ∩B(PI) = ∅.

Let I = [a, b] with c and d be the anti-diagonal corners of I, where b and c are in

horizontal position. Then by theorem 4.1.1 xc can not divide the initial monomial
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•

c

•ri pi

qi

a = (i, j)

b = (k, l)

(i1, j1)

(k1, l1)

Figure 3.1:

of any binomial from the reduced Grö bner basis of IPc w.r.t. lexicographic order

<. This implies that xc is nonzero divisor in S/in<IPc and hence in S/IPc . To

prove that S/IPc is integral domain we will prove that (S/IPc)xc is integral domain.

Here (S/IPc)xc is the localization of S/IPc at the element xc. To prove (S/IPc)xc =

Sxc/(IPc)xc is integral domain, we show that

(IPc)xc = IP ′Sxc

where P ′ is a simple subpolyomino of Pc or we can say that IP ′ is a prime ideal [4

and 8].

Let A = {p1, p2, . . . , pm} be the set of vertices of Pc for which there is an interval

[ri, qi] of Pc whose anti-diagonal corners are c and pi. see Figure 3.1. Here we can

see that ri ∈ [a, c] and qi ∈ [c, b], Now as xri
xqi

− xcxpi
∈ IPc and as we know xc is

invertible in Sxc so xpi
= xqi

xri
x−1

c in Sxc/(IPc)xc . Hence the variables xpi
can be

ignored in Sxc/(IPc)xc , while pi ∈ A.

Let’s take two elements pi, Pj from A for which [pi, pj] is an interval of Pc, then the

anti-diagonal corner of [pi, pj] are also in A. Thus fpi,pj
= xpi

xpj
−xpk

xpl
is an inner

binomial of Pc, where pk and pl are anti-diagonal corner of [pi, pj].

Let [v, pi] be an interval of Pc such that v /∈ A and pi ∈ A. As [ri, pi]\{ri} ⊂ A,

this implies that the anti-diagonal corner p′
i of [v, pi] which is in horizontal position

with pi is also in A. Let v′ be the other anti-diagonal corner of [v, pi], then the inner

binomial xvxpi
−xv′x′

pi
can be written as xri

(xvxqi
−xv′x′

qi
) in IPc . Similarly, if [pi, v]

is an interval of Pc then xvxpi
− xv′x′

pi
is a multiple of xvxri

− xv′x′
ri

in IPc .
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Let P ′ is a collection of cells of Pc obtained after the removing of all cells that

appear in
n∪

i=1
P[ri,qi] and a = (i, j), b = (k, l), then c = (i, l). Now we choose m1 =

(i1, j1) ∈ V (P) such that for any m ∈ V (P) we have m1 ≤ m. Similarly we

choose n1 = (k1, l1) ∈ V (P) such that for any n ∈ V (P) we have n1 ≥ n. In P ′

we identify the vertical interval [a, (i, j1)] with [(i1, j), (i1, j1)], and the horizontal

interval [(k1, l1), (k, l1)] with [(k1, l), b]. With this identification and using the above

arguments we have IP ′Sxc = (IPc)xc . Now only we have to prove that P ′ is a simple

polyomino. First we will show that in this construction P ′ is a polyomino indeed.

Let B be the collection of border cells of PI belonging to P ′. Then B is connected.

Using the convexity of P, we can see that every cell of P ′ is connected to at least

one cell of B, hence P ′ is connected and is polyomino, as desired.

Second, we prove that P ′ is simple. Let J be an interval such that P ′ ⊂ PI ⊂ PJ .

Contrarily suppose that P ′ is not simple. Then we have a cell D /∈ P ′ for which

every path connecting D to border cell of PJ must contain at least one cell of P ′.

Then the inclusion P ′ ⊂ Pc shows that D must be cell of convex polyomino P .

Then by using this argument we can say that every cell of Pc whose edge intersect

with B(P) must be contained in P ′, which can not be possible by our construction

of the P ′. Hence P ′ is simple polyomino.

Figure 3.2: When B(P) ∩B(PI) ̸= ∅
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Figure 3.3: A polyomino P

3.2 Toric ideals of finite graphs

We have seen that polyomino ideals for simple polyominoes are prime. In the above

section we have discussed a case where polyomino ideal is prime but the polyomino

is non-simple. However, these binomial ideals belong to a subclass of binomial ideals

arising from Koszul bipartite graphs ( [10]). Thus, this provides a view point for

a new class of binomial ideals which are prime, the study of nonsimple polyomino

ideals is indispensable.

We show that the ideals of Theorem 3.1.1 cannot come from finite simple graphs.

The following result shows our views.

Theorem 3.2.1. [8] Let I ⊂ N2 be an interval and P a simple polyomino which

is subpolyomino of PI . Let Pc = PI\P and suppose that Pc is a polyomino. Then

its polyomino ideal can not come from a finite simple graph.

Proof. Let J ⊂ N2 be the smallest interval such that V (P) ⊂ J . Now we choose

x1, . . . , x16 ∈ V (P) as shown in Figure 3.3.

Assume that there exist a finite simple graph G with vertex set V (G) and edge set

E(G) in such a way that the ideal IP is equal to toric ideal IG arising from graph

G. Let K[G] = K[titj|{i, j} ∈ E(G)] be the edge ring of G. Then we have an

isomorphism ϕ : K[P ] → K[G] defined as ϕ(xa) = titj where {i, j} is unique edge
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of graph G.

The 2-minor x2x7 − x3x6 is an inner minor of Pc, so ϕ(x2x7) = ϕ(x3x6). Assume

that ϕ(x2) = titj, then ϕ(x7) = tktl where i, jk, l are pairwise distinct vertices of

G and {i, j}, {k, l} ∈ E(G). Then ϕ(x3x6) = titjtktl which gives us the following

possibilities:

(i) ϕ(x3) = titk and ϕ(x6) = tjtl

(ii) ϕ(x3) = titl and ϕ(x6) = tjtk

(iii) ϕ(x3) = tjtk and ϕ(x6) = titl

(iv) ϕ(x3) = tjtl and ϕ(x6) = titk

We may assume that ϕ(x3) = titk and ϕ(x6) = tjtl because the discussion is

same for the remaining cases. By using the inclusion x1x6 − x2x5 ∈ Pc and

ϕ(x2) = titj, ϕ(x6) = tjtl. So we see that ϕ(x1) = titp and ϕ(x5) = tltp where

{i, p}, {l, p} ∈ E(G) for some p ∈ V (G)\{i, j, k, l}. Note that p = k because oth-

erwise ϕ(x5) = ϕ(x7) = tktl, which is not possible. Now from x5x10 − x6x9 ∈ IPc

and ϕ(x5) = tptl, ϕ(x6) = tjtl, we obtain ϕ(x10) = tjtq and ϕ(x9) = tptq for some

q ∈ V (Pc)\{i, p, l, j}. Continuing in the same way, from x9x14 − x10x13 ∈ IPc and

ϕ(x9) = tptq and ϕ(x10) = tjtq, we get ϕ(x14) = trtj and ϕ(x13) = trtp for some

r ∈ V (Pc)\{i, j, l, p, q}. Then, by using x10x15 − x11x14 ∈ IPc , ϕ(x10) = tjtq and

ϕ(x14) = trtj , we get ϕ(x15) = tstr and ϕ(x11) = tstq for some s ∈ V (Pc)\{j, p, q, r}.

Furthermore, by using x3x8 − x4x7 ∈ IPc , ϕ(x3) = titk and ϕ(x7) = tktl, we obtain

ϕ(x4) = tity and ϕ(x8) = tlty for some y ∈ V (G)\{i, k, l, j, p}. Similarly, from

x7x12 − x11x8 ∈ IPc , ϕ(x7) = tktl, ϕ(x8) = tytl and ϕ(x11) = tstq, it follows that

tk|tstq. Thus, one has either k = s and ϕ(x12) = tqty or k = q and ϕ(x12) = tsty.

Let k = s, then ϕ(x6x11 − x7x10) = (tjtl)(tktq) − (tktl)(tjtq) = 0, which guarantees

x6x11 −x7x10 ∈ IG. However, one has x6x11 −x7x10 /∈ IPc , because it is not an inner

minor of Pc, and it gives us a contradiction to our assumption IG = IPc . Hence,

k = q and (x12) = tsty. But then x11x16 −x12x15 ∈ IPc = IG, ϕ(x12x15) = (tsty)(tstr)
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and ϕ(x11) = tstk. Thus, one has either k = r or k = s, which is not possible;

otherwise either ϕ(x11) = tstr = ϕ(x15) or ϕ(x11) = t2s. As a result, we conclude that

IG ̸= IPc for any finite simple graph G.
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Chapter 4

Gröbner bases of polyomino ideal

4.1 Gröbner bases of polyomino ideal

Let P be a polyomino and S = K[xa : a ∈ V (P)] be a polynomial ring, as before.

Here we will use the degree lexicographic order, such that for a = (i, j), b = (k, l) ∈

P , xa < xb if a < b. The basics about Gröbner basis are given in Chapter 1.

Theorem 4.1.1. [13] Let P be a polyomino. Then the set of inner 2-minors of P

form a reduced (quadratic) Gröbner basis w.r.t. <1
lex if and only if for any two inner

intervals [a, b] and [b, c] of P , either [e, c] or [d, c] is an inner interval of P , where d

and e are the anti-diagonal corners of [a, b], see Figure 4.1 .

•c

•d •b

•a •e

Figure 4.1:

Proof. Let P be a polyomino and N be the set of inner 2-minors of IP . We will

consider firt term as a leading term for every binomial. The set N makes a reduced
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Gröbner bases of IP w.r.t. <1
lex iff all S−polynomials of N reduce to zero. Consider

fa,b, fr,s ∈ N given by fa,b = xbxa − xcxd and fr,s = xsxr − xpxq, where d, c are

antidiagonal vertices of [a, b], and p, q are antidiagonal vertices of [r, s], as shown in

Figure 4.2.

c

a

b

d

p

r

s

q

Figure 4.2:

We take the nontrivial case where gcd(in<(fa,b), in<(fr,s)) ̸= 1. We can consider

one of the followings: (i) a = r, (ii) b = s, (iii) a = s ( or b = r).

Take the first one when a = r. Let xb > xs. Then fa,s = xsxa − xpxq and

S(fa,b, fa,s) = xbxpxq − xsxcxd. Also let p ̸= c and q ̸= d, otherwise trivially,

S(fa,b, fa,s) reduces to zero. Then possible situations are shown in Figure 4.3.

a q d

p s h

c b

s < b s ≮ b

a d q

p h s

c b

Figure 4.3:

When s < b, we have

S(fa,b, fa,s) = xq(xbxp − xcxh) + xc(xhxq − xsxd)

When s � b, we have

S(fa,b, fa,s) = xq(xbxp − xcxh) − xc(xsxd − xhxq)

It depicts that in all above situations S(fa,b, fa,s) reduces to zero w.r.t. the inner

2-minors fp,b and fq,h (or fd,s) of P , where h ∈ [b, d] as shown in Figure 4.3.
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c b

p a d

r q

Figure 4.4:

Now we consider the special situation when a = s, see Figure 4.4.

Then S(fa,b, fr,a) = xbxpxq − xcxdxr reduces to zero iff either [p, b] or [q, b] is an

inner interval, which completes the proof.

Corollary 4.1.2. Let I ⊂ N2 and P a convex polyomino which is subpolyomino of

PI . Let Pc = PI\P be a polyomino. Then the inner 2-minors of Pc form a reduced

Gröbner bases of IPc w.r.t. <lex.

4.2 Gröbner bases of balanced polyominoes

Assume P be a polyomino and c, d are two vertices of P which are in vertical (hor-

izontal) position, then the interval [c, d] is called vertical (horizontal) edge interval

of P .

Figure 4.5:
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In [13] it is defined that an integer value function α defined on vertices of poly-

omino is admissible, if ∀ maximal horizontal intervals or maximal vertical intervals

[a, b] one has ∑
c∈[a,b]

α(c) = 0

In Figure 4.6 an admissible labeling of the polyomino displayed Figure 4.5 is shown.
-4 2 2

-1

-3
0

2

3 -1 -1

1

00

0

-412

0

-2 1

-1

3

Figure 4.6: An admissible labeling

For an admissible labeling α we define a binomial in S = K[xa : a ∈ V (P)]

fα =
∏

a∈V (P)
α(a)>0

xα(a)
a −

∏
a∈V (P)
α(a)<0

x−α(a)
a .

Let JP = ⟨fα|α is an admissible labeling of P⟩ ⊂ S. Clearly, the polyomino ideal

IP is contained in JP . A polyomino P is called balanced polyomino if fα ∈ IP for

any admissible labeling α, i.e. IP = JP .

Take the free-abelian group G = ⊕(i,j)∈V (P)Zeij
with bases elements eij. To any cell

D = [(i, j), (i+1, j+1)] of P we attach a binomial gD = eij +ei+1,j+1−ei+1,j −ei,j+1 ∈

G and let ∧ ⊂ G be the lattice spanned by these elements.

Lemma 4.2.1. [9] The elements gD make a K-basis of ∧ and hence rankZ∧ = |P|.

Moreover, ∧ is saturated, i.e. G/∧ is torsion-free .

We denote by I∧, the lattice ideal generated by all binomials of the form

fv =
∏

c∈V (P)
vc>0

xvc
c −

∏
c∈V (P)

vc<0

x−vc)
c
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where v ∈ ∧. In [9] it is proved that, if P is a balanced polyomino then IP = I∧.

And for a balanced polyomino P , the IP is a prime ideal of height |P|.

4.2.1 Primitive binomials

We will identify the primitive binomials in IP for a balanced polyomino P . In this

way we will be able to show that the initial ideal of IP is squarefree monomial ideal

w.r.t. any monomial ideal. The definition of a cycle in P is given in Chapter ??.

Given a cycle C of length m we attach a binomial

fC =
(m−1)/2∏

i=1
xa2i−1 −

(m−1)/2∏
i=1

xa2i

Theorem 4.2.2. [9] Let P be a balanced polyomino.

1. Let C be a cycle in P . Then fC ∈ IP .

2. Let f ∈ IP be a primitive binomial. Then their exists a cycle C in P such that

each maximal interval of P contains at most two vertices of C and f = ±fC .

Corollary 4.2.3. Let P be a balanced polyomino. Then IP admits a squarefree

initial ideal for any monomial order.
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