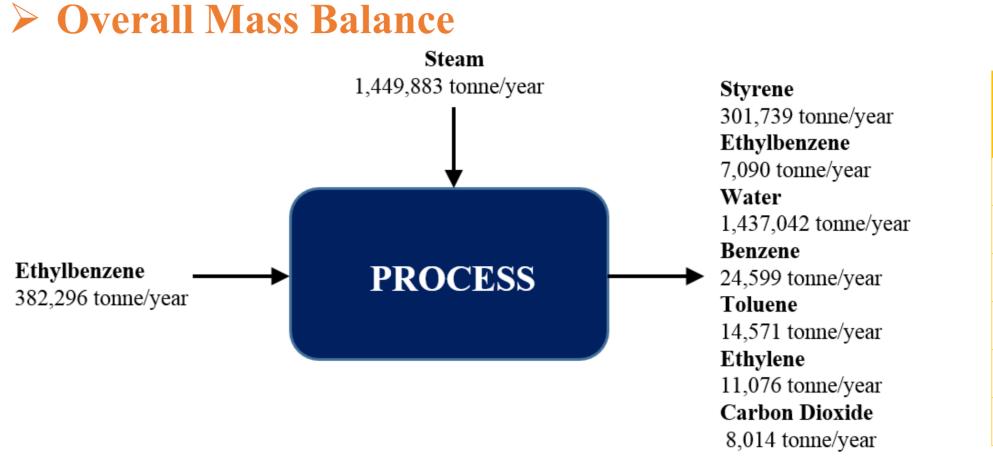
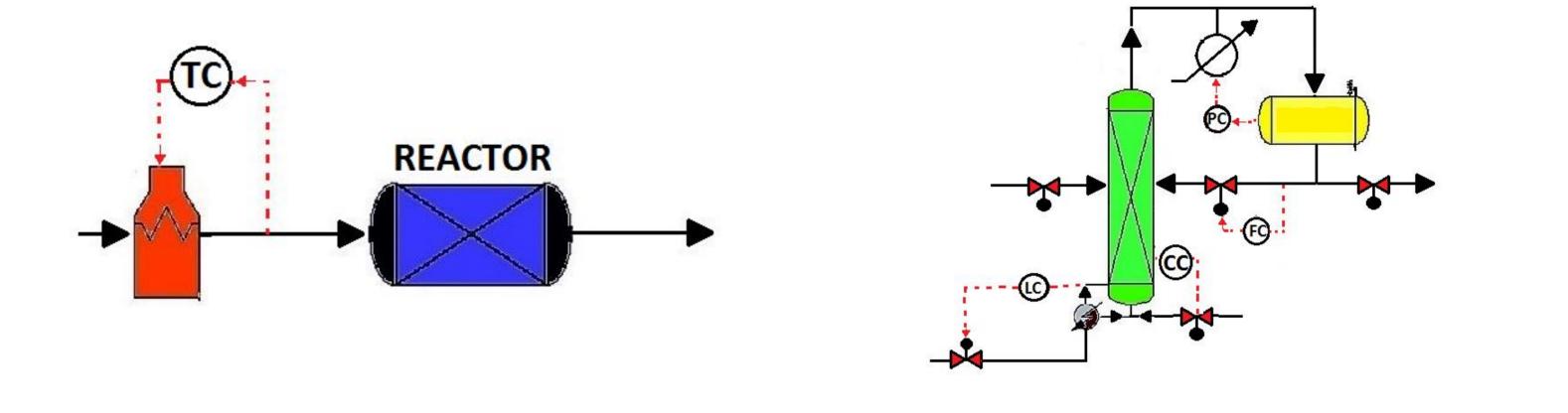
STYRENE PRODUCTION


Gökmen Yağız Topcu, Melodi Özgüç, Mehmet Serhat Aydın, Nihal Olcay Doğan, Özlem Ecem Kaynar, Zeynep Cansu Senyelli

ABSTRACT

Today, Turkey is not the one of the countries that produces styrene and the need for this monomer is met only through imports. In this project, the design and establishment of a new styrene plant, located in Izmir, Aliaga with the capacity of 300,000 tons/year is aimed. The overall reaction is an endothermic reaction in which the total conversion is 0.76 and styrene is obtained with 99.7% purity as designated by ASTM. Process options and selection, production capacity, feasible process conditions, feedstock, admissible emissions of wastes to ground/water/air etc., equipment design, process control, economy are all be considered and determined during the design of this new styrene plant.

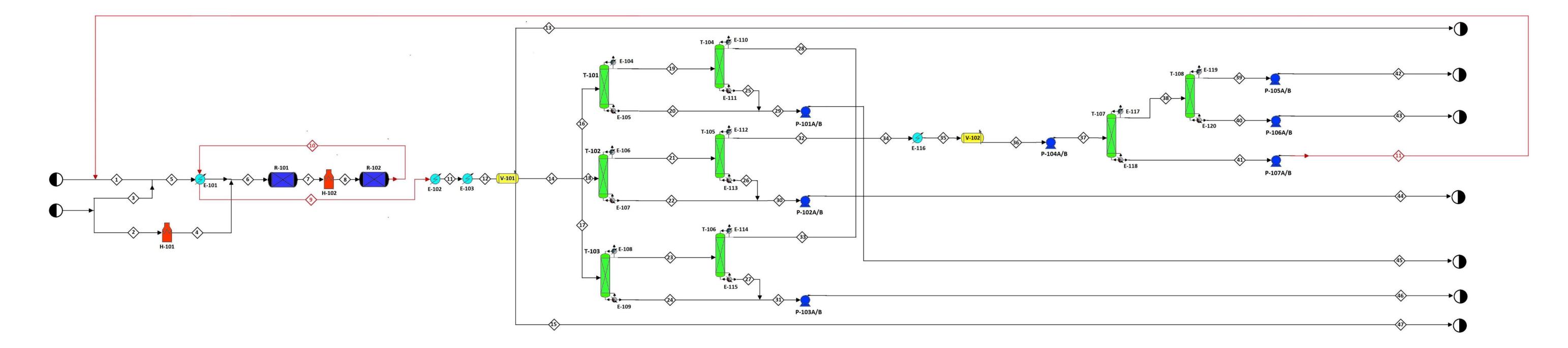
BASIS OF DESIGN


> Overall Energy Balance

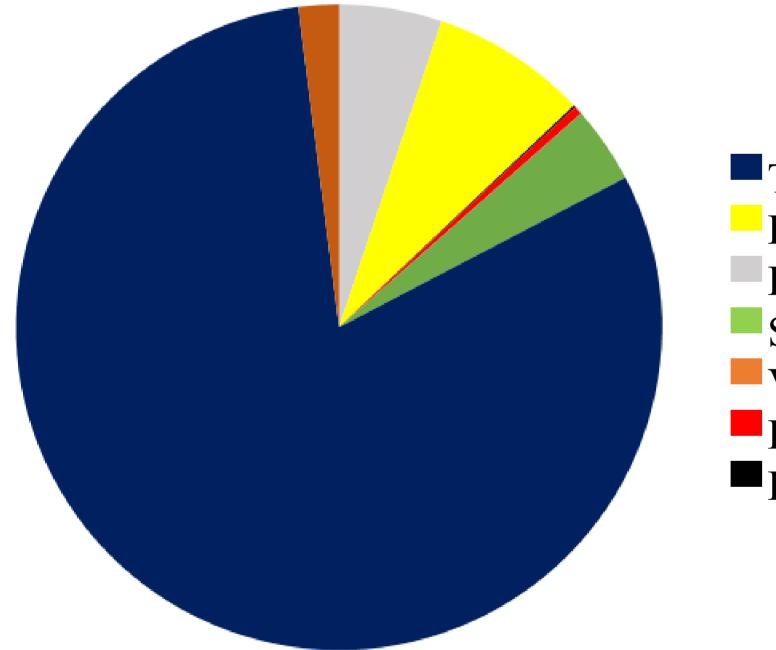
ENERGY BALANCE (kJ/h)	Input	Output
Feed Streams	$-2.2 * 10^9$	-
Product Streams	-	$-2.6 * 10^9$
Total Heating	$1 * 10^9$	-
Total Cooling	$1.4 * 10^9$	-
Power Added	89059	-
Total	$-2.6 * 10^9$	$-2.6 * 10^9$

PROCESS OPTIONS AND SELECTION

PROCESS	Conversion	Cost	Energy	Safety	Commercial
			rocovory		seelo


PROCESS CONTROL

			recovery	issues	scale
1. Dehydrogenation of Ethylbenzene					
1.1 Adiabatic Dehydrogenation	+	+	+	+	+
1.2 Oxidative Dehydrogenation	+	+	+	-	+
3. Benzene and Ethane	+	+	+	+	_
4. Toluene and Methanol	-	+	+	+	-
5. Butadiene	+	-	+	-	-


PROCESS FLOW DIAGRAM

T-101 T-102 T-103 E-104 E-105 E-106 E107 E-108 E-109 T-104 T-105 T-106 E-110 E-111 E-112 E-113 E-114 E-115 P-101 A/B P-102A/B P-103A/B E-116 V-102 P-104A/B T-107 E-117 E-118 T-108 E-119 E-120 P-105A/B P-106A/B P-107A/B H-101 E-101 R-101 H-102 R-102 E-102 E-103 V-101 HEATER COOLER REACTOR HEATER REACTOR COOLER COOLER COOLER PHASE SEPERATOR COLUMN COLUMN COLUMN CONDENSER REBOILER CONDENSER REBOILER TOWER TOWER TOWER CONDENSER REBOILER CONDENSER REBO PLIMP PLIMP COOLER PHASE SEPERATOR FEED PUMP TOWER CONDENSER REBOILER TOWER CONDENSER REBOILER PUMP PUMP

ECONOMIC ANALYSIS

Fixed Capital Investment = 177,100,000 \$

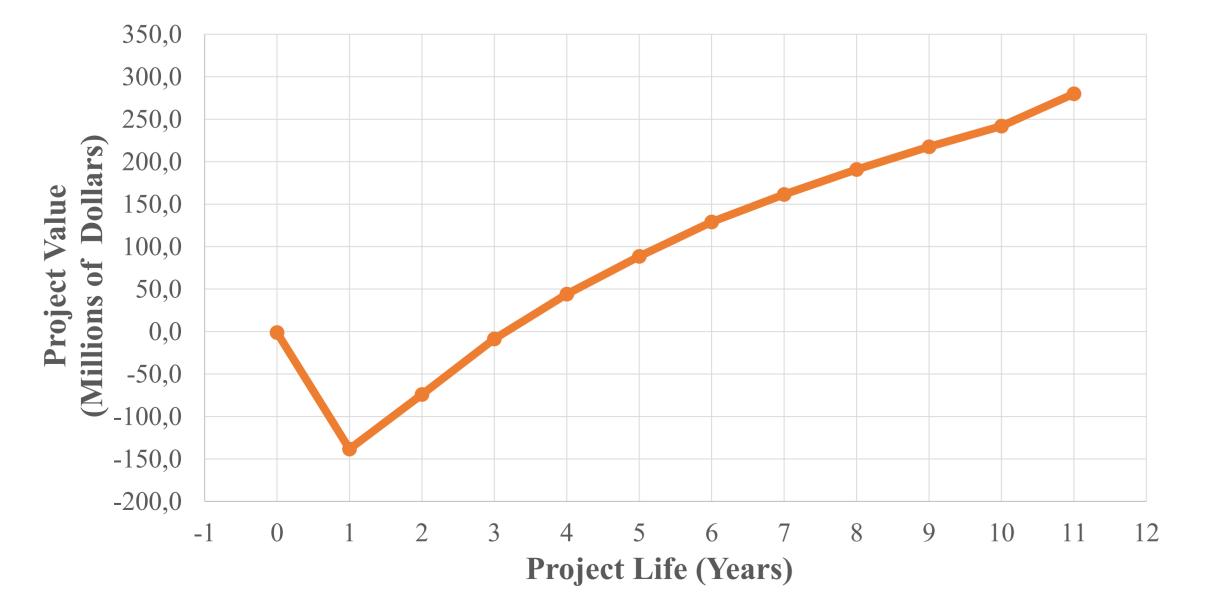
Towers (80.6%)
Fired Heaters (7.8%)
Heat Exchangers (5.1%)
Storage Tanks (3.8%)
Vessels (2.1%)
Reactors (0.4%)
Pumps (0.1%)

FACTOR	COST (\$)	
Fixed Capital Investment (FCI_L)	177,100,000	
Cost of Land	1,250,000	
Working Capital	44,620,000	
Operating Labor (C_{OL})	211,600	
Utilities (C _{UT})	73,600,000	
Raw Materials (C _{RW})	268,900,693	

WASTES, ENVIRONMENT AND SAFETY

> Environmental Considerations

MATERIAL	TYPE OF	ENVIRONMENTAL	FLAMMABLE
	USAGE	EFFECT	
Ethylbenzene	Raw Material	Non-corrosive highly tox	ic Highly flammable
Low Pressure	Raw Material	Non-toxic corrosive	Non-flammable
Steam			
Styrene	Product	Toxic	Flammable
Water	Waste	Water pollution	Non-flammable
Benzene	By-product	Highly toxic explosive	Flammable
Toluene	By-product	Highly toxic	Flammable
Ethylene	Waste	Non-toxic	Flammable
Carbon Dioxide	Waste	Highly toxic	Non-flammable


> Hazard and Operability Analysis

Process Unit: R-101, R-102 PFR							
	Intention: To convert ethylbenzene to vinylbenzene						
Guide Word	Deviation	Cause	Consequence	e	Action	OUR STANDARD ISO Qua	
	Higher temperature	Excess steam flow	Low efficiency Exp	plosion	Decrease steam flow		
More of More flow		Excess flow of inlet stream	m Overflow in tank		Open the emergency valve of reactor	FOUR GUARD Hea	
Process Unit: E-101,E-102, Heat exchanger Intention: For cooling						APROVEMENT	
Guide W	ord Deviation	Cause of Deviation	Consequence	Ро	ossible Action	PLAN	

Fire & Explosion Index (F&EI)

192
49.1
7.570
0.88
0.4

DISCOUNTED CASH FLOW DIAGRAM

Discounted payback period (DPBP)	2.37 years
Net present value (NPV)	279,000,000 \$
Present value ratio (PVR)	6.08

No	No flow	Blockage in line	No heat transfer	Interlock with process shutdown	CON	ACT	
More of	More flow	Malfunction in previous	Unstable operation in	Interlock with high			1
		equipment	next equipment	temperature alarm			
Less of	Less flow	Malfunction in previous	Unstable operation in	Interlock with low			
		equipment	next equipment	temperature alarm			

IMPROVEMENTS

Problems;

- Problems about the sizing of distillation columns
- Should be a single storage tank or more than one?
- ➢ Is it profitable to separate toluene and benzene by adding a new tower?
- \succ How can we reduce the required heat?

Resolved Issues;

- Solved by attaching towers in parallel
- Several storage tanks
- Toluene and benzene are separated in the last distillation column
- Heat integration
- Combustion of hydrocarbons as a fuel
- Using of water as cooling

CONCLUSION

As a consequence, at the end of the 12 years of the project the cumulative cash flow diagram is obtained positive. Cost of fixed capital investment is covered in 2.37 years and the net present value (NPV) is obtained as 279 millions of dollars. Hence, the project is considered as an feasible investment.

ISAS 18001 alth & Safety

11

CHECK