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Abstract

Navigation in 3D terrain is considered to be a challenging task and
requires virtual camera control skills such as zooming, panning and
tilting. Novice users can easily get distracted and disoriented that
may result with lost in space. Methods to overcome the virtual
environment exploration problems are still being researched to as-
sist users during their journey inside virtual environments. Assisted
camera control techniques require viewpoint computation and path
planning. This paper introduces a novel approach to navigate over
a 3D terrain with minimal loss of information. We exploit the con-
cept of the Viewpoint Entropy for best view determination and use
our Greedy N-Best View Selection for visibility calculations. We
integrate road network data to extract regions for detailed visibility
analysis in subsections of the terrain. In order to connect the calcu-
lated viewpoints an evolutionary programming approach for Trav-
eling Salesman problem is used where the distance objective is min-
imized. The generated tour is presented using Google Earth frame-
work for terrain exploration where we can get real data streams.

The computed and planned viewpoints reduces human effort when
used as starting points for scene exploration or generating the rep-
resentative images of the terrain dataset. The proposed framework
can be integrated into 3D game engines or any urban visualization
system to give quick glimpse or tour of the environment for the
novice users without the help of prior planning.

CR Categories: I.3.7 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms;
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1 Introduction

3D object exploration and camera control have been actively stud-
ied in recent years, [Mühler et al. 2007], [Ji and Shen 2006], [Klo-
mann and Milde 2011] and have applications in many areas includ-
ing medical analysis and training, robotics, image based rendering,
virtual reality and scientific visualizations. The goal is to perceive
as much as information available for recognizing objects, detecting
regular or non-regular patterns, and executing the required tasks

∗e-mail: eserin@su.sabanciuniv.edu
†e-mail:serdaradali@sabanciuniv.edu
‡e-mail:balcisoy@sabanciuniv.edu

in efficient thus time-saving way instead of trial-and-error searches
during navigation in the virtual space.

Figure 1: An automatically generated path by our algorithm for
San Francisco shown in Google Earth framework.

Camera control in 3D environments is still a challenging task which
requires viewpoint calculations, path planning and editing. An ex-
cellent survey by [Christie et al. 2008] explain the motivation and
methods for camera control in virtual space. Although the methods
are developed to solve the requirements of different domains, they
share common problems and difficulties such as degrees of free-
dom, computation complexity and lack of generic measures.

Camera control techniques vary from user input reaction based ones
to fully automated controls. The approaches and techniques pre-
sented do not provide a solution for a camera control in large terrain
dataset. In this paper we propose a novel technique to control the
camera for large terrain dataset visualization where the calculated
viewpoints can be used as initial starting points for exploration. The
proposed camera set contains the best views in the extracted subre-
gions and the framework can be integrated into 3D game engines or
any urban visualization system to give quick glimpse or tour of the
environment for the users.

Our navigation in virtual space depends on information and a mea-
sure to quantify that information. Here we borrow the concept of
viewpoint entropy which is introduced by [Vázquez et al. 2001].
The viewpoint entropy is an information theoretical measure and
used to determine the amount of information from a viewpoint.
Viewpoint entropy depends on the model presented by [Shannon
1948] for a general communication system. We model the en-
vironment exploration as a communication between user and the
virtual environment in computer. The entropy lets us to quantify
the amount of information from the points on viewing-sphere from
which we can select a set that receives the maximum in amount.

We use viewpoint entropy and Greedy N-Best View Selection tech-
niques for descriptive and informative view determination in sub-
regions of the terrain surface. We integrate road network data to ex-
tract regions for detailed visibility analysis in subsections. In order
to connect the calculated viewpoints an evolutionary programming
approach for Traveling Salesman Problem is used where a single
objective function i.e. distance is minimized.
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The rest of the paper is organized as follows, in Section 2 we dis-
cuss about the related work in the field of view selection and au-
tomatic camera control in virtual environments, in Section 3 we
elaborate on the theoretical background of our work, in Section 4
and in Section 5 we present the details of computations, in Section
6 we elaborate on the presentation with Google Earth framework
and in Section 7 we discuss about the results and show the images
generated and finally we conclude our work with some remarks at
the end.

2 Related Work

The related work section will be discussed in two different subsec-
tions. The first subsection will elaborate on the viewpoint genera-
tion, informativity and quality of views, the second subsection will
present the camera control techniques used in virtual environments.

2.1 Viewpoint Generation

In recent years many methods have been developed for measuring
the quality of the views and have tried to describe an optimum point
to place the camera on a scene which can be viewed the best way.
Unfortunately the translation of term best or good into measures or
numbers is not an easy task. [Kamada and Kawai 1988] were one
of the pioneers in defining a good position to place a camera in a
3D scene. They define a parallel projection of a scene to be good,
if the number of surface normals orthogonal to the view direction
is minimal. The method has several drawbacks, first it does not
guarantee that user will see as much details as possible and will fail
when comparing equal number of degenerated faces.

[Barral et al. 2000] use a modification of the coefficients introduced
by Kamada-Kawai in order to cope with perspective projection.
They introduce different exploration coefficients, that are combined
to determine the quality of a perspective projection. However, they
can not find a good weighting scheme for those factors. This algo-
rithm fails with objects of genus one and larger.

[Vázquez et al. 2001] propose a metric based on the entropy of the
scene. They define the best viewpoint as the one with the highest
entropy, i.e. the one that sees the maximum of information. They
apply the ratio of the projected area of each face to the area covered
by the projection of all faces in the scene. Vazquez et al. suggest
the technique in 2001 and make improvements in following years.

[Vázquez 2009] proposes a technique to select the views automati-
cally by using depth-based stability analysis. In this work he intro-
duces a new view descriptor which uses depth maps to have three-
quarter oblique views for 3D objects. He claims that psychophys-
ical experiments have shown users often prefer oblique views be-
tween frontal and profile views as representative views for 3D ob-
jects.

[Sokolov and Plemenos 2006] propose a high level technique and
claim the techniques presented above as low-level. They step in the
direction of semantic description of a 3D scene and use hierarchical
decomposition of them. They define the viewpoint quality as the
sum of observation qualities of each decomposed object.

Mesh Saliency is another aspect of viewpoint generation which is
also actively studied in viewpoint generation as well as mesh sim-
plification. Salient features including luminance, pixel colors or
geometry are deliberated. [Koch and Ullman 1985] suggest that
salient locations in 2D images will be different from its neigh-
bors. [Itti et al. 1998] propose a method for calculation of saliency
map using 2D images. They combine information from center-
surround mechanisms applied to different feature maps and assign

a saliency value to each pixel. [Lee et al. 2005] propose a geometri-
cal approach for calculation of mesh saliency in 3D models. Their
method uses the curvature attribute of the object and Itti et.al.’s
center-surround mechanism to highlight the regions that are dif-
ferent from their surroundings. [Takahashi et al. 2005] propose
a method to locate optimal viewpoints for volumetric objects by
decomposing the entire volume into a set of feature components.
[Bordoloi and Shen 2005] use view goodness, view likelihood and
view stability concepts to locate viewpoints for volume rendering
where viewpoint goodness measure is based on entropy that uses
the visibility of the voxels.

2.2 Camera Control

The camera control can be classified into four different methods by
their control techniques; direct control, through the lens control, as-
sisted control and automated control [Christie et al. 2008]. The key
issues for researchers include the management of the control in the
high degrees of freedom, handling of exponentially growing com-
putation complexity and finding effective and reactive measures to
avoid the occlusions in the scene. In this work we present the as-
sisted and automatic camera control techniques as related because
they depend on the knowledge about the environment or feedbacks
from different sensors.

Assisted camera control technique exploits local or global knowl-
edge about the environment to assist the users through their naviga-
tion. It can be classified into two metaphors such as object aware
and environment aware assistances depending on their knowledge
type [Christie et al. 2008]. In object aware assistance the proximal
object inspection is used for collision avoidance such as ray cast-
ing, and in environment aware assisted camera control metaphor
the global knowledge about the scene is used to avoid obstacles
or direct the user to interesting parts. [Elmqvist et al. 2007] use
scene voxelization, connectivity graph and TSP-like algorithm to
assist the user in their guided navigation framework. [Andjar et al.
2004] exploit the concept of Viewpoint Entropy for indoor naviga-
tion. They use cell and portal decomposition together with the cal-
culated viewpoints in each cell. This work resembles most to our
work however, instead of indoor portals, our environment is large
scale terrains, we use our Greedy N-Best View Selection algorithm
for calculations in the regions extracted by the help of road network
data. We also utilize the evolutionary programming paradigm to
find the path between the calculated viewpoints. The details of our
approach will be discussed in subsequent sections.

In automated camera control, the transformation and rotational at-
tributes of the camera is directly computed using either the gen-
erated image, or the fitness function that needs to be optimized.
Visual servoing or target tracking is one example of the automated
camera control using image analysis technique. Visual servoing
uses the feedback information extracted from a vision sensor to con-
trol the motion of a robot [Espiau et al. 1991]. In optimization based
automated camera control the deterministic or non-deterministic
optimization methods are employed to find the camera configura-
tion. For instance [Bares et al. 2000] propose the use of a complete
search space where it can be called as global optimization approach.
In our technique we employ the divide and conquer metaphor. We
calculate camera positions for sub-regions of the terrain and utilize
a non-deterministic approach such as population-based genetic TSP
to calculate the final camera path.



3 Theoretical Background

3.1 Viewpoint Entropy

The entropy [Shannon 1948] of a discrete random variable X with
values in the set {x1, x2, ...xn} is defined as

H(x) =

n∑
i=1

p(xi)I(xi) = −
n∑
i=1

p(xi) logb p(xi) (1)

Even though the entropy is expressed as a function of the random
variable X, it is actually a function of the probability distribution p
of the variable X over the number distinct symbols N. Entropy func-
tion has two important properties, the maximum entropy occurs for
the distribution peq , where {p0 = p1 = ... = pN−1 = 1/N} and
Entropy is a concave function which implies that the local maxi-
mum at peq is also the global maximum [Bordoloi and Shen 2005].
The properties of the entropy function give us that the calculated
viewpoints in extracted regions will be the global maximum points
where the object surface is percepted equally.

Viewpoint entropy [Vázquez et al. 2001] using Shannon Entropy is
defined as

I(S,p) = −
Nf∑
i=1

Ai
At

logb
Ai
At

(2)

where Ai is the projected area of face i over the sphere, At is the
total area of the sphere and b is the base of logarithm which is taken
as b = 2 in this case the result is bits/symbols. Since we use orthog-
onal projection in our application we selected the formula presented
in [Vázquez et al. 2006] which is the orthogonal viewpoint entropy
version of equation (2) shown above. In that equation Ai is taken
as the number of pixels belong to each face of the object and At is
the number of pixels in the image. The techniques to compute the
viewpoint entropy using Graphics Processing Unit can be found in
the paper Castello et al. [Castelló et al. 2006]. We will discuss
about calculation of viewpoint entropy using the texels of the 3D
terrain for our approach in subsequent chapters.

3.2 Travelling Salesman Problem

The traveling salesman problem(TSP) is an NP-hard problem of
combinatorial optimization studied in Operations Research and
Computer Science. Given a list of cities and their pairwise dis-
tances the task is to find the shortest possible tour that visits each
city exactly once [Reinelt 1994].

3.2.1 Euclidian and Spherical TSP

In our framework we use two versions of TSP problem, hence Eu-
clidian space TSP, and spherical TSP. Euclidian space TSP is used
to enumerate the sequence of the extracted regions to be traveled
on the texture surface. The calculated tour will have N extracted
regions with M computed best viewpoints for that region. We can
formulate the concept of a tour,

T = {R1, R2, ...Rn : n ∈ Z} (3)
Ri = {c1, c2, ...cn : m ∈ Z}such thatRi ∈ T (4)

where T denotes a tour of N different regions and Ri denotes the
region i on the surface of terrain.

The spherical TSP is used to enumerate the sequence of the calcu-
lated camera points in region Ri. shown in equation(4) The dif-
ference between Euclidian space TSP and spherical TSP is the dis-
tance function used to determine length between two points.

In Euclidian space the geodesic distance between two 3D points is
a straight line, however the shortest distance between two points
(p0, p1) on a spherical surface is the arc length of the points along
the Great Circle. So it is the angle of alpha(α) between two vec-
tors ~v0 and ~v1 from the origin of sphere to p0(λ, θ) and p1(λ, θ)
on the surface respectively with and can be calculate directly us-
ing Haversine formula [Sinnott 1984]. The shortest distance on a
sphere between two points is shown in equation(5) where R is the
radius of the sphere.

∆λ = λ0 − λ1

∆θ = θ0 − θ1
a = sin(∆λ/2)2 + cos(λ0). cos(λ1). sin(∆θ/2)2

c = 2. arctan 2(
√
a),
√

1− a)
d = R.c

(5)

The provided distance functions are used during the execution of
genetic TSP for the purposes stated above.

3.2.2 Genetic Approach for TSP

Genetic algorithms are one of the computational intelligence meth-
ods which are used to find approximate or sub-optimal solutions
to the NP-hard combinatorial optimization problems. It is gener-
ally inspired from the biological facts and evolution. Genetic al-
gorithms employ the concept of population, gene, crossover and
mutation. Population is a set of genes in the current iteration of
the algorithm, and a gene is an enumeration of a valid solution to
the problem being solved. The crossover concept is inspired from
inheritance of two parents, where a child carry the combination of
two parent genes. The mutation can be expressed as the effect of the
environmental factors over a gene. Evolution concept is applied by
terminating the genes that are progressing poorly and creating new
genes from a random group of successful genes where the newly
created genes will do better eventually.

4 Scene Analysis and Path Generation

Our method employs the divide and conquer metaphor for the scene
analysis. It utilizes the help of the road network data to extract sub-
regions, and calculates sub-optimal viewpoints for the regions and
exploits the genetic TSP algorithm for connecting the calculated
viewpoints.

4.1 Region Extraction

The purpose of region extraction is providing meaningful informa-
tion to the user by the help of analyzing the road intersection data.
We believe that the intersection points give us a heuristic about res-
idential areas which can be considered as significant salient fea-
tures of a terrain. Although the details of our camera point gen-
eration and path construction algorithm will be discussed in subse-
quent sections, the salient points establishes the base of the analysis
for sub-optimal viewpoint generation. Intersection points form the
bounding spheres that are used as an enclosed space to decompose
the surface to be investigated in detail.

The steps of our region extraction algorithm include the intersection
point determination from road segments, intersection points group-
ing, creating a convex hull from the points in groups and bounding
sphere generation. The generated bounding spheres are analyzed



for mutual-inclusion, and the spheres that are enclosed by other
spheres are removed programmatically.

(a) (b)

(c) (d)

Figure 2: The region extraction algorithm steps are visualized. In
(a) An example road network is shown, (b) Intersection points are
marked with red square. In (c) the result of convex hull determina-
tion algorithm is presented. The extracted bounding circle is shown
in (d)

We used [cga ] line segment intersection algorithm for intersection
points extraction that are considered as salient points, and Graham-
Andrew Scan algorithm for convex hull determination.

4.2 Terrain Rendering

In our application DTED Level-1 data is used for the terrain el-
evation. The data is preprocessed and converted to 2048 x 2048
grid Binary Terrain (BT) format where it is loaded into VTP [VTP
2011] for rendering and viewpoint generation. The generated im-
age depends on CLOD(Continous Level of Detail) algorithm pre-
sented by [Snroettg et al. 1998] which uses the dynamic triangula-
tion of hierarchial quadtrees. When the viewpoint moves the trian-
gulation changes continuously and results in a phenomenon called
vertex popping. This dynamic behavior of the algorithm conflicts
with Viewpoint Entropy when setting a metric to calculate. Pro-
jected face area is used as probability mass function(pmf ) in regular
Viewpoint Entropy computation. In order to handle this problem
we used texturing instead of colorization of triangles. Each texel
is colored uniquely and the projected texel colors are taken as the
the pmf during entropy computation and viewpoint generation. In
Figure.3.a the triangulated elevation data is shown using wireframe
mode. The application of uniquely colored texturing to the terrain
data is shown in Figure.3.b.

4.3 Best Viewpoints

The term best or good is highly subjective and difficult to quan-
tify, and mostly depends on the application or context. Despite its
subjectiveness, researchers may agree that some images created by
the tessellation are more informative compared to the others using
different criteria. The term informative is chosen on purpose. Be-
cause, the information on a communication channel can be quanti-
fied by the term entropy. Although there are other measures such as
visibility ratio quantified as the ratio of the visible 3D surface area
to the total 3D surface area, curvature entropy quantified as the en-
tropy of the Gaussian curvature distribution over the entire surface
of the object, or view-dependent measures as silhouette length, sil-
houette entropy or topological complexity, we selected viewpoint

(a)

(b)

Figure 3: Wireframe mode for a region of terrain is shown in (a).
When the camera gets closer vertex popping phenomenon occurs.
In (b) the uniquely colored texturing is applied to the elevation data

entropy as our candidate to cover polygons of the 3D object by us-
ing a minimal set of camera points because it exposes surface area
as information to the viewer.

We modified the Viewpoint Entropy calculation technique pre-
sented in [Vázquez et al. 2001] to utilize the usage of latitude and
longitudes on spherical space, we calculated binary combination of
each point in viewset for midpoint calculation where they are en-
tropy weighted. Differences provided us higher sample view points
on sphere, which resulted a viewpoint that covers as much polygon
as possible.

Although finding N-best view selection is known to be NP-hard, in
this work we use our greedy choice algorithm which tries to detect
the sub-optimal N-best views to perceive the information communi-
cated by the object. The algorithm is modified to take the previously
covered faces as input and to return the currently covered faces as
output. The viewpoint entropy computation is also changed not to
include the pixels from already visited faces. The major steps of the
revised algorithm includes the following steps;

(a) Best view selection algorithm is called with empty polygon cov-
erage set

(b) Accumulate the visited faces into the set from previous best
view selection algorithm

(c) Call the best view selection algorithm with the new set

(d) Go to (b) until all faces covered or best view selection algorithm
can not output newly covered faces

The algorithm shown above starts from initial points and navigates
around the object on each best view selection call. This method
resembles to finding the best view of non-visited faces for each call.



5 Camera Path Planning

As mentioned in theoretical background section genetic algorithms
find approximate or sub-optimal solutions to the NP-hard combina-
torial optimization problems. We treat the planning of a path from
the calculated best viewpoints as a tour generation problem over the
urban area to be visualized. The tour concept is tightly coupled with
a well known NP-hard problem called Traveling Salesman Prob-
lem. Given a list of cities and their pairwise distances the task is
to find a shortest possible tour that visits each city exactly once. In
our urban visualization problem the cities are the calculated view-
points for the extracted sub-regions of the terrain and the tour is a
problem stated as quick urban exploration. We tried to present a
plausible solution by optimizing the the total distance traveled with
this work.

5.1 Path Planning for Intra-Regions

Best viewpoints for the extracted sub-regions are calculated by the
help of our Greedy N-Best View Selection algorithm which uses
modified Viewpoint Entropy technique. In this algorithm the model
or the region to be explored is bounded with a sphere where the re-
gion and bounding sphere centers are aligned. Our objective is to
find best viewpoints on this bounding sphere where the camera po-
sition is denoted by (λ, θ) and the up-vector is perpendicular to the
viewing direction along North-pole(+Y). Due to the shortest dis-
tance between two points (p0, p1) on a spherical surface is the arc
length of the points along the Great Circle, we exploited the spheri-
cal genetic approach for Traveling Salesman Problem to enumerate
the tour in this region.

A gene is encoded with a valid tour that contains all the id’s of
the calculated camera positions. A random population of 10000
genes are created and simulation is run 100000 generations where
the mutation ratio is set to be 3%. Evolution concept is applied by
terminating the worst two genes and creating two new genes from
a random group of successful genes. An example output of the
spherical genetic algorithm is shown below where two valid genes
A and B are presented which show a tour over a sphere with five
points.

p0 = (0, 0)
p1 = (π

4
, π
4

)
p2 = (−π

4
, −π

4
)

p3 = (−π
4
, π
4

)
p4 = (π

4
, −π

4
)

A = (p0, p1, p2, p3, p4, p0) = 7.33
B = (p0, p3, p2, p4, p1, p0) = 5.75

(6)

The the cost of tour A is 7.33 on unit sphere where the the cost of
tour B is 5.75. The tour B is the output of the spherical genetic
TSP algorithm. In the case of not using unit sphere, the difference
in the cost will increase proportionally with respect to the radius of
sphere to be calculated, which complies with the need of finding
a sub-optimal solution for camera enumeration. This sub-optimal
enumeration of the viewpoints presents that the total traveled dis-
tance is minimized in our framework.

After the calculation of enumeration and positional values of the
camera points, the next task to handle for path planning is choosing
a technique to travel along the curves. The spherical linear inter-
polation(Slerp)[Shoemake 1985] is used which refers to constant
speed of motion along a unit radius of great circle. Since our com-
putations are done on spherical space this technique suits well for
our problem design. Its constant speed of motion is natural and pro-
duces smooth animation curves which does not distract the users
perception.

5.2 Path Planning for Inter-Regions

The path among the extracted regions are arranged using Euclidian
TSP algorithm with evolutionary programming approach. The al-
gorithm enumerates the sequence of the regions to be traveled by
using region centers as points to be visited in a tour. Similar to ge-
netic approach used for intra-region, a valid gene set called popula-
tion is constructed. Each gene encodes all the regions to be traveled
via a sequence number or region id.

The created population is run for 100000 generations where the mu-
tation ratio is set to be 3%. Evolution concept is also applied by
terminating the worst two genes and creating two new genes from
a random group of successful genes. When the simulation is done,
the enumerated region centers are used to construct the Bezier curve
for the camera trajectory in inter-region movement.

5.3 Final Camera Trajectory

The final camera path is constructed by combining the paths gener-
ated for intra and inter regions. The tour can be started from a re-
gion selected to be initial or any region that the user is interested in.
The camera follows the constructed intra-region path and continues
onto the next region. When the camera trajectory enters the next
region it starts to follow the intra-path constructed for that region.
The camera visits all the enumerated region in the same approach.

With the techniques provided with this work, we tried to present
a plausible solution for a automatic camera trajectory. Best views
calculated from the extracted salient points optimized the user’s sur-
face perception, and genetic TSP algorithm enabled us to construct
a path that creates a optimal tour for the terrain exploration.

6 Tour Presentation in Google Earth

The automatically generated tours are presented using Google Earth
[Goo ] framework. Even though it is possible to show tours with
VTP framework, Google Earth provides a better way to demon-
strate the tour in a realistic and detailed 3D environment. Google
Earth also enables us to define the tours through geospatial data
with the ability of smooth flight pass locations and specific flight
durations between those points. The tour is mainly defined using
KML file format, Google Earth’s XML notation for expressing geo-
graphic annotation and visualization. With the aid of the tour gener-
ated by our algorithm, we automatically export our best viewpoints
and their fly-over order into the KML document for touring actions
in Google Earth. The authored KML document contains a sequence
of FlyTo and Duration element tags.

7 Results

In this framework San Francisco Bay Area DTED data and major
highways road network data is used for automatic path computa-
tion. The DTED data is a 2048x2048 grid and road network data
is a set of 12084 linestrings which can be considered as real world
data.

We extracted 35 regions using the extraction algorithm presented
with this work and generated a complete tour with the methods
mentioned in previous sections. Our technique is completely au-
tomatic and needs no user intervention.

Sketch for the generated path is shown in Figure.4. The circles
demonstrate the path followed for intra-region viewpoints and lines
show the path followed by the camera on the way from one region
to the other. The radius of the sphere depends on the intersection



point locations extracted from the road network data. The gener-
ated intra-region camera path resembles a circle on the sphere that
bounds the region, which is consistent with the expectation from
our best viewpoint computation and the spherical TSP. The com-
plete set of the extracted regions using Google Earth framework are
shown in Figure.5.

Figure 4: Sketch for the generated path. Circles show the path for
the intra-regions and lines show the path for inter-regions.

Inter-region tour is shown with connecting lines in Figure.6. Re-
gion centers are represented with the placemarks. The length of the
generated path is sub-optimal due to the usage of TSP algorithm.
The complete tour starts from the first region and follows the cam-
era points generated for that region and moves to the next region.
The tour is terminated when all the viewpoints for the final region
are visited.

Figure 5: Extracted regions are presented by the spheres using
Google Maps framework.

Figure 6: Inter-region tour shown with connecting lines using
Google Maps framework. Placemarks represent the region centers.

8 Conclusion

With this work we present an entropy assisted solution to explore
the terrain dataset effectively. Our technique can provide a quick

glimpse or tour of the environment for the novice users and can
improve user perception. The computed and planned viewpoints
reduces human effort when used as starting points for touring in a
scene or generating the representative images of the terrain dataset.
The proposed framework can be integrated into 3D game engines
or urban visualization systems to introduce the virtual environment
for the novice users without the help of prior path planning.

We tested our method using real terrain and road network dataset
and exported the generated tour to visualize it with Google Earth
framework.

The generated tour visualization has shown that Shannon’s entropy
model is a promising way to solve viewpoint related problems by
providing a measure to quantify the information on the communi-
cation channel between the user and visual world.
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CASTELLÓ, P., SBERT, M., CHOVER, M., AND FEIXAS, M.
2006. Techniques for computing viewpoint entropy of a 3d
scene. In International Conference on Computational Science
(2), 263–270.

CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

CHRISTIE, M., OLIVIER, P., AND NORMAND, J.-M. 2008. Cam-
era control in computer graphics. Comput. Graph. Forum 27, 8,
2197–2218.

ELMQVIST, N., TUDOREANU, M. E., AND TSIGAS, P. 2007. Tour
generation for exploration of 3d virtual environments. VRST 27,
207–210.

ESPIAU, B., CHAUMETTE, F., AND RIVES, P. 1991. A new ap-
proach to visual servoing in robotics. In Geometric Reasoning
for Perception and Action, 106–136.

GOOGLE EARTH. http://earth.google.com August 2011.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE Trans. Pat-
tern Anal. Mach. Intell. 20, 11, 1254–1259.

JI, G., AND SHEN, H.-W. 2006. Dynamic view selection for
time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12, 5,
1109–1116.



KAMADA, T., AND KAWAI, S. 1988. A simple method for com-
puting general position in displaying three-dimensional objects.
Computer Vision, Graphics, and Image Processing 41, 1, 43–56.

KLOMANN, M., AND MILDE, J.-T. 2011. Semi autonomous cam-
era control in dynamic virtual environments. In HCI (14), 362–
369.

KOCH, C., AND ULLMAN, S. 1985. Shifts in selective visual
attention: towards the underlying neural circuitry. Human Neu-
robiology 4, 4.

LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. 2005. Mesh
saliency. ACM Trans. Graph. 24, 3, 659–666.
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VÁZQUEZ, P.-P. 2009. Automatic view selection through depth-
based view stability analysis. The Visual Computer 25, 5-7, 441–
449.

VTP, 2011. Virtual terrain project http://www.vterrain.org, July.


