
Event-Based Relative Debugging

KOÇ Uğur ugurkoc@sabanciuniv.edu

DEMİRÖZ Gülşen gulsend@sabanciuniv.edu
YILMAZ Cemal cyilmaz@sabanciuniv.edu

Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla – Istanbul

Abstract

Identifying the root causes of failures is one of the most

time-consuming and tedious components of program

debugging. Many automated approaches have been

proposed to facilitate program debugging. Relative

debugging is one of them. In relative debugging, a faulty

program is debugged by comparing it to a reference

implementation, which is assumed to be correct. Both

programs are executed in parallel. The executions are

interrupted at certain points during executions. The states

of the programs at the point of interruption are then

compared and the differences (if any) are visualized as a

debugging aid. One downside of existing relative debugging

approaches is that they only compare program states,

without taking the history of events causing those states

into account. In this work we present an event-based

relative debugging approach. In this approach, we infer

finite state machine models from sequences of events

occurring in executions, compute the structural differences

between these models, and report them as a debugging aid.

A case study conducted at a small-scale shows promise.

Keywords: relative debugging, debugging, fault localization,

software quality assurance.

1. Introduction

Program debugging is the process of identifying and fixing

defects in programs. The most expensive component of

program debugging is the identification of the root causes for

failures. To this end, developers observe the symptoms of

failures, develop failure hypotheses, and iteratively validate

and refine their hypotheses until the root causes are located.

Clearly, this process can be quite tedious and time-consuming.

Many automated approaches have been proposed in the

literature to facilitate program debugging [3, 5, 7, 8, 9, 10]. The

ultimate goal of these approaches is to reduce and/or prioritize

the space of likely root causes for failures, which can in turn

improve the turnaround time for bug fixes.

One such automated approach, which is also the focus of this

paper, is relative debugging [1, 2]. In relative debugging, a

faulty program is debugged by using a reference

implementation. Both the faulty program and the reference

program are executed in parallel with the same concrete input.

When the control reaches to a pre-determined location in the

source code, the executions are interrupted and the state of the

faulty program is compared to that of reference program. The

differences between the states (if any) are then visualized as a

debugging aid.

Relative debugging requires a reference implementation for the

program being debugged. Such reference implementations are

available in many scenarios. For example, when a stable

program is being ported to another platform, the stable version

can be used as the reference implementation. When a parallel

version of an existing sequential program is being developed,

the sequential version can be considered to be the reference

program. When a program is being refactored, the original

program can serve as the reference implementation. The results

of many empirical studies suggest that relative debugging can

help developers pinpoint the root causes of failures [1, 2].

One downside of the existing relative debugging approaches,

though, is that they only leverage program states for

comparisons. The histories of events that have brought the

programs to those states are ignored. While examining

program states helps determine faulty states, the chain of

events causing the faulty states needs to be traced back in order

to locate the root causes. In this work we conjecture that taking

program events into account when comparing executions, can

further improve the effectiveness of relative debugging

approaches.

2. Related Work

The idea of relative debugging was first materialized in the

GUARD tool [1]. GUARD operates by comparing key data

structures between a faulty program and its reference program.

It takes as input a set of assertions. Each assertion determines

the key data structures to be used in the comparisons and the

source code locations at which the comparisons should be

made. Given the assertions, program executions are interrupted

at the specified locations and the differences between the key

data structures (if any) are visualized. Relative debugging was

later adapted for debugging of parallel programs [2].

3. Proposed Approach

In this work, rather than seeing a program execution as a

sequence of program states as is the case in existing relative

debugging approaches, we see it as a sequence of events. An

event simply represents a high level functionality performed by

the system, such as receiving/sending a network package,

connecting to a server, updating a database, computing a value,

spawning a process, and starting a new thread.

Events are specified by the developers of the software under

test. This can be done by annotating the source code and/or by

making calls to special purpose functions. Furthermore, events

can be defined in a hierarchical way, i.e., an event can be

composed of other events.

Figure 1. The FSM model inferred from the reference version of sed.

Figure 2. The FSM model inferred from the faulty version of sed.

Figure 3. Structural difference between the two FSM models.

Given the definitions of events, we monitor a program

execution, record the sequence of events occurring in the

execution, and infer a finite state machine (FSM) model for the

sequence. In these FSM models, states represent program states

and transitions represent the occurrences of events. An event

moves the program from one state to another.

The proposed approach can be summarized as follows. We, by

following a similar approach with the existing relative

debuggers, execute both the reference program and the faulty

program in parallel. The executions are interrupted at pre-

determined locations. For each program, we then infer a FSM

model for the sequence of events that have occurred so far.

Finally, we compute the structural difference between these

two FSM models [4] and report the difference as a debugging

aid.

4. A Case Study

To evaluate the proposed approach, we conducted a feasibility

study. In this study, we used sed, which is an open source

stream editor, as our subject application. The subject

application, being taken from a widely-used defect repository,

came with two versions: a stable version and a faulty version.

We used the stable version as our reference version to debug

the faulty version.

To carry out the study, we considered each function invocation

to be an event. Note that, although we opted to use function

invocations as events in the study, the proposed approach has a

more general notion of events. We executed both programs in

parallel and right before each function invocation, i.e., before

each occurrence of an event, we interrupted the executions. We

then inferred a FSM model per program by using the sequence

of function invocations observed so far. For that purpose, we

used a tool, called FsmUnitApi [6]. We then computed the

structural differences between the models by using a tool,

called statechum [4].

Figure 1 and Figure 2 visualize the FSM models obtained from

the reference and the faulty version of the program,

respectively. These are the FSM models computed at the time

when the first difference was observed. Furthermore, Figure 3

presents the structural difference between these FSM models.

Figure 3 indicates that there had been no difference between

the FSM models until the last function invocation, i.e., until

state 47. However, in state 47, while the reference version was

calling function inchar, the faulty version called in_integer

(marked by the arrow in the figure).

The result of the analysis greatly helped us pinpoint the root

cause. It turned out that the faulty program was trying to read

an integer value from an input stream at a point where a

character value was expected. This caused an error, which later

forced the program to terminate abruptly.

5. Concluding Remarks and Future Work

In this work we presented an event-based relative debugging

approach and evaluated it by conducting a case study. The

result of our case study, although conducted at a small scale,

demonstrates that the proposed approach is promising.

However, much work remains to be done. How should the

events be specified? Could there be program debugging-

oriented ways of inferring the FSM models and computing the

structural differences? What types defects are best suitable for

the proposed approach? Will the approach scale to larger and

more complex software systems?

In particular, we are interested in the applications of the

proposed approach in incremental development scenarios. For

example, consider a scenario in which, after making a change

in a stable code base, some test cases, which used to work

successfully in the previous version, now fail. In such

scenarios, where the difference between the reference program

and the faulty program is small, we hypothesize that event-

based relative debugging can greatly help developers locate the

root causes of failures.

References

[1] D. Abramson, I. Foster, J. Michalakes, R. Sosic, "Relative

Debugging: A new paradigm for debugging scientific

applications", The Communications of the Association for

Computing Machinery (CACM), 39(11): 67 - 77, Nov 1996.

[2] D. Abramson, G. Watson, "Relative Debugging for Parallel

Systems", In Proceedings of PCW 97, Sept. 1997, Australia.

[3] H. Agrawal, J. R. Horgan, "Dynamic program slicing", In

Proceedings of the ACM SIGPLAN 1990 Conference on

Programming Language Design and Implementation (PLDI),

25(6):246–256, White Plains, New York, June 1990.

[4] K. Bogdanov, N. Walkinshaw, "Computing the Structural

Difference between State-Based Models", In 16th IEEE

Working Conference on Reverse Engineering (WCRE), 2009.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin,

"Dynamically discovering likely program invariants to support

program evolution", IEEE Transactions on Software

Engineering, 27(2):1–25, Feb. 2001.

[6] A. Gargantini, M. Guarnieri, E. Magri, “An Eclipse-based

environment for conformance testing by FSMs”, 2011.

Fsmunit, https://svn.origo.ethz.ch/fsmunit

[7] B. Liblit, A. Aiken, A. X. Zheng, M. I. Jordan, "Bug

isolation via remote program sampling", In Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Language

Design and Implementation (PLDI-03), 38(5):141–154. ACM

ress, 2003.

[8] M. Renieris, S. Reiss, "Fault localization with nearest

neighbor queries", In Proceedings of the International

Conference on Automated Software Engineering, pages 30-39,

Montreal, Quebec, October 2003.

[9] Y. Xie, D. Engler, "Using redundancies to find errors". In

FSE, pages 51–60, Nov. 2002.

[10] A. Zeller, R. Hildebrandt, "Simplifying and isolating

failure-inducing input", IEEE Transactions on Software

Engineering, 28(2):183–200, Feb. 2002.

