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a b s t r a c t

In this paper we investigate traveling wave solutions of a non-linear differential equation describing the
behaviour of one-dimensional viscoelastic medium with implicit constitutive relations. We focus on a
subclass of such models known as the strain-limiting models introduced by Rajagopal. To describe the
response of viscoelastic solids we assume a non-linear relationship among the linearized strain, the
strain rate and the Cauchy stress. We then concentrate on traveling wave solutions that correspond to
the heteroclinic connections between the two constant states. We establish conditions for the existence
of such solutions, and find those solutions, explicitly, implicitly or numerically, for various forms of the
non-linear constitutive relation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The present paper is concerned with the dynamics of a
viscoelastic medium investigating the traveling wave solutions of
the equation

TxxþνTxxt ¼ gðTÞtt ; ð1:1Þ
where Tðx; tÞ is the Cauchy stress at point x and time t, gð�Þ is a non-
linear function and ν40 is a constant. Eq. (1.1) is a one-
dimensional non-linear differential equation in T resulting from
the equation of motion and a constitutive equation relating the
stress, the linearized strain and the strain rate.

As opposed to the classical models in mechanics, the strain can
be written as a function of the stress, rather than expressing the
stress in terms of the kinematical variables. This idea is due to
Rajagopal [11,12], who introduced a generalization of the theory of
elastic materials by suggesting implicit models allowing for
approximations where the linearized strain is a non-linear func-
tion of the stress. A series of papers on such implicit theories have
been published recently (see e.g. [1,4,5,15,16]). The advantage of
this new idea is that it allows for the gradient of the displacement
to stay small so that one could treat the linearized strain, even for
arbitrary large values of the stress. In this work we focus on four
different such models, and we reconsider them in the context of
viscoelasticity. We also look at models with quadratically and
cubically non-linear constitutive relations although they do not
behave as expected for large values of the stress.

There are numerous models introduced by Rajagopal in [11]
with implicit constitutive relations between the stress and the
strain including models for elastic fluids, inelastic materials and
non-hyperelastic materials. Following these models, various forms
of non-linear constitutive relations have been studied in different
contexts. For example, Kannan et al. [9] worked on the elastic case
with a polynomial type non-linearity (see Section 2 for more
details). Bulíček et al. [1], on the other hand, considered the static
case with a more general non-linearity (see Section 2) and
presented the first existence result in a three-dimensional domain.

For viscoelasticity, much less is done in the literature. As
explained by Muliana et al. in [10], force, and hence the stress, is
the cause for deformation, hence for the strain. Because of this the
strain should be described in terms of the stress or its history than
vice versa. The motivation for this idea is that in the classical
elasticity theory, there cannot be a non-linear relationship
between the linearized strain and the stress, which, in fact, is
observed in some experiments (see e.g. [19,15]). The fracture of
brittle elastic bodies is another possible application area for such
implicit theories, where one can obtain bounded strain at the
crack tip due to the possibility of having a non-linear relationship
between the linearized strain and the stress (see [18] for details).
Muliana et al. [10] developed a quasi-linear viscoelastic model
where the strain is expressed as an integral of a non-linear
measure of the stress. Rajagopal and Srinivasa in [17] proposed a
Gibbs-potential-based formulation for the response of viscoelastic
materials in this new class. Also Rajagopal and Saccomandi [16]
investigated viscoelastic response of solids, a one-dimensional
version of which is the one we study in this work, namely

γBþνD¼ β0Iþβ1Tþβ2T
2; ð1:2Þ
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where γ and ν are non-negative constants, βi ¼ βiðI1; I2; I3Þ; ði¼ 0;1;2Þ,
I1 ¼ tr T; I2 ¼ 1

2tr T
2; I3 ¼ 1

3tr T
3, B is the left Cauchy–Green stretch

tensor and D is the symmetric part of the gradient of the velocity field.
As they explain, this model includes as special subcases; models for a
very general new class of elastic and viscoelastic bodies (e.g. Titanium
and Gum metal alloys), as well as the Navier–Stokes fluid model (see e.
g. [12]). Linearizing the strain in this model reduces (1.2) to

ϵþνϵt ¼ β0Iþβ1Tþβ2T
2; ð1:3Þ

where ϵ¼ 1
2 ∇uþ∇uT
� �

is the linearized strain and u x; tð Þ is the
displacement.

We study (1.3) in one space dimension with a general non-
linear right-hand side (see (2.2)). We are interested in analyzing
the conditions on the non-linearity g(T) when traveling wave
solutions of the form TðξÞ with ξ¼ x�ct, where c represents the
wave propagation speed, exist for two constant equilibrium states
at infinity. We find the solutions analytically (implicitly or expli-
citly) or numerically. More precisely, we will first look at the
quadratic and the cubic cases for which we are able to solve the
problem analytically and obtain explicit or implicit solutions. After
that we will study four non-linear models, namely Models A–D
(see Section 2), and we will either express the solution implicitly,
or obtain it numerically if it is not possible to find an analytical
solution. Our work seems to be the first such treatment in the
literature of strain-limiting viscoelasticity.

The propagation of traveling waves in non-linear viscoelastic
solids has also been studied previously in the context of classical
theory of viscoelasticity (see e.g. [6–8], and references therein).
The results of present work exhibit some similarities with those in
the literature. The first common point is that the equations of
motion admit kink-type traveling wave solutions. Also, in both
cases, the effective width of the traveling wave is proportional to
the viscosity parameter and the wave profile becomes smoother as
the viscosity parameter increases. However, our study differs from
the articles within the context of classical viscoelasticity theory in
the sense that the governing equation in our model (see (1.1)) is
in terms of the stress and also the non-linearity is on the
inertia term.

The structure of the paper is as follows. In Section 2 we
introduce the one-dimensional strain-limiting viscoelasticity
model as well as give a list of four non-linear constitutive relations
that has been suggested for elastic solids. In Section 3 we consider
traveling wave solutions of the governing equations. In Section 4
we solve the resulting differential equation for different non-linear
constitutive relations, and give analytical solutions where possible,
or obtain numerical solutions.

2. One-dimensional strain-limiting viscoelasticity

Consider a one-dimensional, homogeneous, viscoelastic, infi-
nite medium exhibiting small strains for large stresses. In the
absence of external body forces, the equation of motion is given by

ρ0utt ¼ Tx; ð2:1Þ
where ρ0 is the mass density of the medium, the scalar-valued
function uðx; tÞ is the displacement, and Tðx; tÞ is the Cauchy stress.
Here and throughout this work the subscripts denote partial
derivatives. In contrast to explicit constitutive relations of the
classical theories of viscoelasticity, we shall employ an implicit
constitutive relation

ϵþνϵt ¼ gðTÞ; ð2:2Þ
which gives the linearized strain ϵ¼ ux and the strain rate ϵt as a
non-linear function of the stress T, with gð0Þ ¼ 0 and a non-
negative constant ν. The model defined by (2.2) is the one

dimensional form of (1.3). When ν¼ 0, it reduces to the one-
dimensional version of the model introduced by Rajagopal in
[11,12] for elastic solids.

For convenience, we now define the dimensionless quantities

x ¼ x
L
; t ¼ t

L

ffiffiffi
μ
ρ

r
; T ¼ T

μ
; u ¼ u

L
; ν ¼ ν

L

ffiffiffi
μ
ρ

r
; ð2:3Þ

where L is a characteristic length and μ is a constant with the
dimension of stress. Differentiating both sides of (2.1) with respect
to x, substituting (2.2) into the resulting equation and using (2.3),
we obtain (1.1), where we drop the overbar for notational
convenience. The question that we shall discuss throughout the
rest of this work is which of the possible forms of the non-linear
function g(T) are relevant for the existence of traveling wave
solutions of (1.1). Following mainly the standard techniques used
widely in the literature to find traveling wave solutions we obtain
the solutions of (1.1), explicitly, implicitly or numerically, for
various forms of g(T).

We now discuss some strain-limiting models reported in the
literature for elastic and viscoelastic solids. The following is a list of
non-linear constitutive relations g(T) which we adopt in
this study:

Model A: We first consider the one-dimensional version of the
model proposed in an elastic setting by Kannan et al. in [9],
namely,

gðTÞ ¼ βTþα 1þγ
2
T2

� �n
T ; ð2:4Þ

where αZ0, βr0, γZ0 and n are constants. Note that when n¼0
and/or γ ¼ 0, one recovers the standard constitutive equation for a
linearized material. In Section 4, for the strain-limiting viscoelastic
model defined by (2.2)–(2.4) we obtain traveling wave solutions
explicitly if n¼1 and implicitly if n¼ �1=2.

Model B: The second model is based on a simplified version of
the non-linear constitutive relation proposed by Rajagopal in [14]:

gðTÞ ¼ T

ð1þjT j rÞ1=r
; ð2:5Þ

where r40 is a constant. This model was studied in elastic
settings by many authors in different contexts (see e.g. [1–3]).
Note that when β¼ 0, n¼ �1=2, α¼ 1 and γ ¼ 2, Model A
becomes equivalent to Model B with r¼2. In Section 4, when
r¼2, traveling wave solutions corresponding to this model are
obtained in closed form.

Model C: This model is the one-dimensional form of the
constitutive relation proposed by Rajagopal in [13,14]:

gðTÞ ¼ α 1�exp � βT
1þδjT j

� �	 

þ γT
1þjT j

� �
; ð2:6Þ

where α, β, γ and δ are constants. Note that when β¼ 0 and
α¼ γ ¼ 1 this model reduces to Model B with r¼1. In Section 4, we
solve the non-linear differential equation corresponding to this
model numerically and compute traveling wave solutions for a
specific set of parameter values.

Model D: This model is the one-dimensional form of a different
model again introduced by Rajagopal in [13,14]:

gðTÞ ¼ α 1� 1

1þ T
1þδjT j

0
BB@

1
CCAþβ 1þ 1

1þγT2

 !n

T ; ð2:7Þ

where α, β, γ and δ are constants. Note that when α¼ 0, with
appropriate choice of the remaining parameters, we may derive
Model A from this model. In Section 4, traveling wave solutions
corresponding to this model are also obtained numerically for a
specific set of parameter values.
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Before going further, we would like to recall the remark made
by Rajagopal in [13] about Models C and D. He says that both
Model C and Model D have a drawback when the stress is
compressive and sufficiently large. It is obvious from (2.6) and
(2.7) that the assumption of small strain will be violated due to the
initial terms in these equations when the stress is negative and
sufficiently large. Furthermore, as it was also mentioned by
Rajagopal in the same article, there are typographical errors in
Eqs. (3.12) and (3.13) of [14], where Models C and D were
introduced.

Fig. 1 shows the variation of g(T) with T in a moderate stress
regime for the above-mentioned four non-linear models with
some specifically chosen parameter values. We note that, due to
(2.2), the vertical axis in Fig. 1 measures the sum of the linearized
strain and the strain rate. Moreover, we observe that in the case of
moderate stress levels the linearized strain may remain finite for
the above models of strain-limiting viscoelasticity depending on
the parameter values.

3. Traveling wave solutions

In this section we investigate traveling wave solutions of (1.1).
Traveling waves are solutions of the form

T ¼ TðξÞ; ξ¼ x�ct; ð3:1Þ
where the wave propagation speed c is a constant to be deter-
mined below. Substitution of (3.1) into (1.1) reduces the third-
order partial differential equation to the third order ordinary
differential equation in the variable ξ given by

T
00 �νcT

000 ¼ c2½gðTÞ�00 ; ð3:2Þ
where the symbol 0 stands for differentiation. For the rest of this
study, we focus on traveling wave solutions of (3.2) that corre-
spond to the heteroclinic connections between two constant
states. Obviously, TðξÞ � constant is a trivial solution of (3.2), so
we assume that

lim
ξ-�1

TðξÞ ¼ T �
1 ; lim

ξ-þ1
TðξÞ ¼ T þ

1 ð3:3Þ

with T �
1aT þ

1 , where T �
1 and T þ

1 are constants to be specified
later. Our main problem is to find restrictions on the non-linear
function g(T), which guarantees the existence of such a traveling
wave solution, and is to discuss, from this point of view, the
constitutive functions suggested in the literature.

We now integrate (3.2) once and then use the boundary
conditions T 0ðξÞ; T 00 ðξÞ-0 as ξ-71, to eliminate the arbitrary

integration constant. A further integration of the resulting equa-
tion yields

T�νcT 0 ¼ c2gðTÞþA; ð3:4Þ
where A is an arbitrary integration constant. Boundary conditions
(3.3) then give

A¼ 1
2 T �

1þT þ
1�c2½gðT �

1ÞþgðT þ
1Þ� �

; ð3:5Þ

and

c2 ¼ T �
1�T þ

1
gðT �

1Þ�gðT þ
1Þ: ð3:6Þ

Thus the squared wave speed is obtained in terms of the two
known states at infinity. Using (3.5) to eliminate A in (3.4) we get
the differential equation

T 0 ¼ f ðTÞ ð3:7Þ
where

f ðTÞ ¼ 1
νc

T�T �
1þT þ

1
2

� �
�c2 gðTÞ�gðT �

1ÞþgðT þ
1Þ

2

	 
� �
:

Of course, two obvious equilibrium points of (3.7) are T ¼ T �
1 and

T ¼ T þ
1 , that is, f ðT �

1Þ ¼ f ðT þ
1Þ ¼ 0. Integrating (3.7) we get the

implicit solution in the form

ξ�ξ0 ¼
Z T

T0

ds
f ðsÞ; ð3:8Þ

where ξ0 is a constant and Tðξ0Þ ¼ T0.
We conclude this section with a description of a prototype

problem on which we will discuss the consequences of various
forms of the non-linear function g(T) in the next section. Recall
that a heteroclinic traveling wave propagates from one constant
state to the other if c240. Due to (3.6) this implies that a traveling
wave solution of (3.2) and (3.3) exists in one of the following two
cases:

Case ðiÞ T �
14T þ

1 and gðT �
1Þ4gðT þ

1Þ; ð3:9Þ
or

Case ðiiÞ T �
1oT þ

1 and gðT �
1ÞogðT þ

1Þ: ð3:10Þ
For the remainder of this paper, without loss of generality, we
restrict our attention to the first case for tractability reasons.
Furthermore, we assume that the two constant equilibrium states
are a normalized state of the stress and the zero reference state of
the stress; that is, we take

T �
1 ¼ 1 and T þ

1 ¼ 0: ð3:11Þ
One should recall that the stress is dimensionless. Also, even
though we restrict our attention to the case (3.11) we should be
aware that the non-linearity amplifies the values of g(T) when
jT j41 and reduces them when jT jo1, and, depending on which
range of T we are working in, the traveling wave profile for g(T) is
affected correspondingly.

We note that (3.9), (3.11) and gð0Þ ¼ 0 imply gð1Þ40. This
condition is automatically satisfied by Model B (recall that r40),
but it imposes the following restrictions on the parameters of
Models A, C and D, namely,

gð1Þ ¼ βþα 1þγ
2

� �n
40;

gð1Þ ¼ α 1�exp � β
1þδ

� �	 

þγ
2

� �
40;

and

gð1Þ ¼ α
2þδ

þβ
2þγ
1þγ

� �n

40;

0 1 2 3 4 5
0

0.5

1

T

g

Model A
Model B
Model C
Model D

Fig. 1. Variation of the function g(T) with moderate T values for various non-linear
models of strain-limiting viscoelasticity. The specific sets of the parameter values
are as follows: α¼ 0:5, β¼ �0:01, γ ¼ 1 and n¼ �0:5 for Model A, r¼2 for Model B,
α¼ 0:5, β¼ �0:01 and γ ¼ δ¼ 1 for Model C and α¼ 0:5, β¼ �0:01, γ ¼ δ¼ 1 and
n¼0.5 for Model D.
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respectively. Plugging (3.11) into (3.6) gives

c2 ¼ 1=gð1Þ ð3:12Þ
where we have used gð0Þ ¼ 0. With the use of (3.11), the differ-
ential equation (3.7) becomes

T 0 ¼ 1
νcgð1Þ gð1ÞT�gðTÞ½ �; ð3:13Þ

which is studied for various forms of g(T) in the next section. We
also note that solutions of (3.7) and (3.13) are translational
invariant. That is, if TðξÞ is a solution of (3.7) or (3.13), then so is
TðξþpÞ for any fixed constant p. Consequently, noting that Tð0Þ can
take any number in the range of values for T, we fix the traveling
wave solution by assuming that

Tð0Þ ¼ 1=2: ð3:14Þ
Two equilibrium points of (3.13) are clearly T¼1 and T¼0

(since gð0Þ ¼ 0). Eq. (3.13) may have additional equilibrium points
depending on the form of g(T). Assume that (3.13) has an
equilibrium point Tn for which gð1ÞTn ¼ gðTnÞ. The linearization
of (3.13) at this point possesses one real eigenvalue:

λ¼ gð1Þ�g0ðTnÞ
νcgð1Þ ;

which shows that Tn is an unstable equilibrium for gð1Þag0ðTnÞ,
and a stable equilibrium for gð1Þ ¼ g0ðTnÞ.

4. Applications to some non-linear models

This section discusses in detail both quadratic and cubic models
of strain-limiting viscoelastic solids and the non-linear models
presented in Section 2, within the context of Section 3.

We first remark that there is no heteroclinic traveling wave
solution when we consider an elastic solid for which ν¼ 0. This
can be easily seen from (3.7) or (3.13) by neglecting the derivative
term (i.e. the dissipation term). Then, the only solution of the
resulting algebraic equation is a constant solution but the bound-
ary conditions at infinity require two different constants, giving a
contradiction.

A similar conclusion is also valid for the linear viscoelastic
model for which we have gðTÞ ¼ g0ð0ÞT with g0ð0Þa0. In such a
case (3.7) (or (3.13)) reduces to T 0 ¼ 0 which implies that T is a
constant. Following the same line of reasoning we find that there
is no heteroclinic traveling wave solution for the strain-limiting
linear viscoelastic model.

In the remaining part of this section we focus on six particular
forms of g(T): the quadratic and cubic models, and the non-linear
models described in Section 2, namely Models A, B, C and D. Fig. 2
shows the variation of g(T) with T for linear, quadratic and cubic
models in a moderate stress regime. We observe from Fig. 2 that,
depending on the chosen parameter values, the quadratic and
cubic models exhibit qualitatively different responses and they
may give rise to negative or large positive values of g(T) with
increasing values of the stress. Obviously, the case where a positive
(tensile) stress gives rise to a negative (compressive) strain is
physically unacceptable in one-dimensional elastic or viscoelastic
medium. Additionally, for large and positive values of g(T) the
small strain assumption of strain-limiting viscoelastic solid is
violated. Therefore, we conclude that, in general, the quadratic
and cubic models may result in either physically unacceptable
strain values or strain levels that are not consistent with the
linearized strain assumption of strain-limiting theories. However,
since they are the simplest representatives of the non-linear
models, for completeness we begin our discussion by considering
general quadratic and cubic constitutive relations.

4.1. Quadratic case

For the quadratic case, we assume that the function g(T) is of
the form

gðTÞ ¼ g0ð0ÞTþ1
2 g

00ð0ÞT2: ð4:1Þ

We first consider the traveling wave problem with the boundary
conditions (3.3) and then specify them to be as in (3.11). Substitu-
tion of (4.1) into (3.6) gives

c2 ¼ g0ð0Þþ1
2 g

00ð0ÞðT �
1þT þ

1Þ� ��1
:

The restriction c240 requires that one of the following two cases
must hold:

g00ð0Þ4 �2g0ð0Þ
T �
1þT þ

1
and T �

1þT þ
140;

or

g00ð0Þo �2g0ð0Þ
T �
1þT þ

1
and T �

1þT þ
1o0:

With the use of (4.1) in (3.7), the differential equation we need to
solve becomes the Riccati differential equation

T 0 ¼ a2T
2þa1Tþa0; ð4:2Þ

where a0, a1 and a2 are constants defined by

a2 ¼ �cg00ð0Þ
2ν

; a1 ¼
1�c2g0ð0Þ

νc
; a0 ¼ �1

2
T þ
1þT �

1
� �ð1�θÞ

with

θ¼
g0ð0Þþ1

2
g00ð0ÞðT

�
1Þ2þðT þ

1Þ2
T þ
1þT �

1

g0ð0Þþ1
2
g00ð0ÞðT �

1þT þ
1Þ

:

We observe that, when T �
1 ¼ 0 or T þ

1 ¼ 0, the coefficient a0
vanishes and (4.2) reduces to the Bernoulli differential equation.
This makes it possible to find explicit solutions.

We now turn to the case of (3.11) in which the wave propaga-
tion speed and the constants a0, a1 and a2 reduce to

c2 ¼ g0ð0Þþ1
2 g

00ð0Þ� ��1
40;

and

a2 ¼ �g00ð0Þc
2ν

; a1 ¼ �a2; a0 ¼ 0; ð4:3Þ

0 1 2 3 4 5
0

0.5

1

g Linear
Quadratic
Cubic

T

Fig. 2. Variation of the function g(T) with moderate T values for the linear,
quadratic and cubic models of strain-limiting viscoelasticity. The specific sets of
the parameter values are as follows: g0ð0Þ ¼ 1 for the linear model, g0ð0Þ ¼ 1 and
g00ð0Þ ¼ �0:6 for the quadratic model, and g0ð0Þ ¼ 1, g00ð0Þ ¼ �1 and g000ð0Þ ¼ 0:5 for
the cubic model.
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respectively. Consequently, (4.2) takes the form

T 0 ¼ a2Tð1�TÞ; ð4:4Þ

which admits the only two equilibrium solutions T¼0 and T¼1.
Using (3.8) we find that, under the condition (3.14), the explicit
solution of (4.4) is found as

TðξÞ ¼ 1þexpða2ξÞ
� ��1

: ð4:5Þ

The important point to note here is that (4.5) satisfies the
conditions defined by (3.3) and (3.11) if a240. Combining this
with (4.3) implies that the traveling wave solution exists if
g00ð0Þo0 and c40 or if g00ð0Þ40 and co0. In other words, the
heteroclinic wave solution is a right-going traveling wave if
g00ð0Þo0 and a left-going wave if g00ð0Þ40. On the other hand,
there is no heteroclinic traveling wave solution for the quadratic
model if a2o0, that is, if g00ð0Þ and c have the same sign. Fig. 3
shows the variation of the analytical solution given in (4.5) with ξ
for three different values (corresponding to small, moderate and
large values) of the viscosity parameter ν, as well as the profile for
the sum of the linearized strain and the strain rate. We observe
from Fig. 3 that, as it is expected, the traveling wave profiles
become smoother as the viscosity increases. We also deduce from
Fig. 3(b) that the profile for g(T) is strongly distorted, in fact its
values are reduced, due to the non-linear dependence. Of course,
this distortion can be intensified by choosing the values of the
parameter g0ð0Þ appearing in the constitutive relation properly.
Furthermore, by choosing this parameter sufficiently small one
could stay in the regime where the linearized strain assumption
is valid.

We close this part by examining the possibility of a shock wave
(a traveling discontinuity). Differentiating the explicit solution TðξÞ

given by (4.5), we get

T 0ðξÞ ¼ � a2 expða2ξÞ
1þexpða2ξÞ
� �2: ð4:6Þ

The effective width of the traveling wave is defined as
d¼ ðT �

1�T þ
1Þ=maxjT 0ðξÞj . Using (3.11) we conclude from (4.5)

that the effective width of the heteroclinic traveling wave is
d¼ 4=ja2 j for the quadratic model. From (4.3), it follows that
d¼ 8ν=jg00ð0Þcj . Since the width d is proportional to the viscosity
parameter ν, it is natural to expect that the wave profile becomes
smoother as ν increases. Furthermore, since the denominator of
T 0ðξÞ in (4.6) is never zero, we conclude that a shock wave does
not form.

4.2. Cubic case

In this case we assume that

gðTÞ ¼ g0ð0ÞTþ1
2
g00ð0ÞT2þ1

6
g

000 ð0ÞT3: ð4:7Þ

Substitution of (4.7) into (3.7) yields

T 0 ¼ 1
νc

T�T þ
1þT �

1
2

� �
�c2 g0ð0ÞTþ1

2
g00ð0ÞT2þ1

6
g

000 ð0ÞT3�gðT þ
1ÞþgðT �

1Þ
2

	 
� �
:

ð4:8Þ

We again consider the case defined by (3.11). So it follows from
(3.12) that

c2 ¼ g0ð0Þþ1
2
g00ð0Þþ1

6
g

000 ð0Þ
	 
�1

40:

Using (3.11) in (4.8) (or using (4.7) in (3.13)) we obtain the
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Fig. 3. Variation of (a) TðξÞ, and (b) gðTðξÞÞ of the quadratically non-linear model with ξ for three different values of ν (where g0ð0Þ ¼ 1 and g00ð0Þ ¼ �0:6).
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correspond to three different values: g00ð0Þ ¼ 0;0:25;0:75 (or equivalently b¼ 1;2:5;5:5). (a) Stress (b) Strain.
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differential equation

T 0 ¼ aTð1�TÞðTþbÞ; ð4:9Þ
where the constants a and b are given by

a¼ �cg
000 ð0Þ
6ν

and b¼ 1þ3
g00ð0Þ
g000 ð0Þ: ð4:10Þ

It is worth pointing out that (4.9) admits three equilibrium
solutions: T¼0, T¼1 and T ¼ �b. Solving the differential equation
(4.9) with (3.14) gives the closed-form solution

T1þb

ð1�TÞbðTþbÞ
¼ 1
1þ2b

expðbð1þbÞaξÞ:

Fig. 4 presents the variation of TðξÞ and gðTðξÞÞ with ξ for three
different values of g00ð0Þ, namely, g00ð0Þ ¼ 0;0:25;0:75; when
ν¼ 0:5, gð0Þ ¼ 1 and g

000 ð0Þ ¼ 0:5. Note the different scales for the
vertical axes of Fig. 4a and b. We observe that the profiles for the
stress and the strain become smoother as g00ð0Þ (or equivalently b)
increases. Similar to the quadratic case the profile for g(T) is
distorted due to the non-linearity. Also, as it is expected from
the behaviour of the cubic non-linearity in Fig. 2, the values of T
are amplified in Fig. 4(b). Furthermore, we note that, when
g00ð0Þ ¼ 0 (or equivalently b¼1), it is possible to obtain an explicit
solution from the implicit one as

TðξÞ ¼ expðaξÞ
ð3þexpð2aξÞÞ1=2

: ð4:11Þ

The crucial fact is that the conditions given by (3.3) impose a
restriction on the constant a, which is the condition ao0. This
implies that, for the special cubic model, the traveling wave
solution exists if ao0, or equivalently, if g

000 ð0Þ and c have the
same sign. The variation of the analytical solution given in (4.11)
with ξ for three different values of the viscosity parameter ν
produces a figure, which is very similar to Fig. 3 and shows that
the same conclusions are also valid for the present case, and
therefore we do not reproduce it here.

4.3. Case of Model A

We now take (2.4) to define the constitutive relation for our
strain-limiting viscoelastic solid through (2.2). Of course, if n¼0,
(2.4) gives the linear model of strain-limiting viscoelasticity, for
which we have already mentioned that there is no heteroclinic
traveling wave. In general, depending on the values of the
parameters appearing in (2.4) the function g(T) exhibits very
different patterns of behaviour. As stated before, when β¼ 0,
n¼ �1=2, α¼ 1 and γ ¼ 2, Model A becomes equivalent to Model
B with r¼2 and the implicit solution corresponding to this special
case is given in the next subsection. In this subsection we restrict
our attention to the case n¼1, which allows us to find an explicit

solution for the corresponding differential equation. Substituting
(2.4) with n¼1 into (3.13) yields

T 0 ¼ κTð1�T2Þ; ð4:12Þ
where

κ ¼ αγ
½αð1þγÞþβ�νc: ð4:13Þ

It is clear that (4.12) is a special case of (4.9), with b¼1 and a¼ κ.
Therefore, if we replace a in (4.11) by κ we get the explicit solution
corresponding to (2.4) with n¼1. Additionally, we conclude that
the traveling wave solution exists if κo0, or equivalently if
c½αð1þγÞþβ�o0 (recall that ν40;αZ0; γZ0). Since the travel-
ing wave solution is a special case of (4.11), we can draw the same
conclusions by saying that the traveling wave profiles become
smoother as the viscosity increases as well as the wave profile for g
(T) is distorted due to the non-linearity.

4.4. Case of Model B

Here we take (2.5) as g(T) in (2.2). Note that combining (2.5)
with (3.12) gives c2 ¼ 21=r . If we substitute (2.5) into (3.13), we get
the differential equation that we need to solve as

T 0 ¼ T
νc

1� 21=r

ð1þjT j rÞ1=r

 !
: ð4:14Þ

In the case of r¼2, we find an analytical solution of (4.14). Using
(3.8) and (3.14) we obtain the solution implicitly as

HðTÞ ¼Hð1=2Þ expðξ=νcÞ; ð4:15Þ
where the function H(s) is defined as

HðsÞ ¼ ð1�s2Þ2
s½3þs2þ23=2ð1þs2Þ�

 !
ð1þs2Þ1=2þ1

s

 !21=2

:

Note that some basic properties of H(s) are as follows:

Hð81Þ ¼ 0; Hð1=2Þ40;

and

HðsÞ-1 as s-0þ :

By combining these properties and (4.15), we deduce the following
two sets of results, depending on the sign of c. If c40, we get

T-0þ as ξ-þ1 and T-81 as ξ-�1:

Similarly, if co0, we get

T-81 as ξ-þ1 and T-0þ as ξ-�1:

We restrict our attention to the case c40 since the corresponding
conditions are compatible with (3.3) and (3.11).
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Fig. 5. Variation of (a) TðξÞ, and (b) gðTðξÞÞ of Model B with ξ for three different values of ν (r¼2). (a) Stress (b) Strain.
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Fig. 5 shows the graph of the implicit solution for a specific set
of parameter values and for three different values of the viscosity
parameter ν, and also the profile of the strain. From Fig. 5, we can
see that the traveling wave profile becomes smoother as the
viscosity increases, and the profile for g(T) is distorted due to the
non-linearity as in the previous models.

4.5. Case of Model C

We obtain the differential equation we need to solve by
substituting (2.6) into (3.13). However, since the resulting equation
is highly non-linear and an analytical solution is not available, we
focus on the numerical solution instead. To this end we use
MATLAB function ode45 to solve the differential equation, which
is the standard solver of MATLAB for ordinary differential equa-
tions. Omitting the details of the numerical calculations, we show
in Fig. 6 the numerical solutions for three different values of the
viscosity parameter ν.

4.6. Case of Model D

When we substitute (2.7) into (3.13) we again get a highly non-
linear differential equation for which an analytical solution is not
possible to find. For this reason, it is convenient to solve it
numerically using MATLAB function ode45 just as above. In
Fig. 7 we plot the numerical solutions for three different values
of the viscosity parameter ν.

Both Figs. 6 and 7 clearly show that Models C and D have kink-
type traveling wave solutions and that the wave profiles obtained
numerically for the stress are in qualitatively good agreement with
those derived from the analytical solutions belonging to the
previous models. We note that the wave profiles for the strain

are significantly different from those of the previous models. The
remarks made for those models regarding the smoothness and
distortion of the profiles are also valid in both cases. We also
observe that the reduction of the values of g(T) in Model D is
significantly stronger than that of Model C.
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