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Abstract

We study the system of equations of motion for inextensible strings. This system can be recast into 
a discontinuous system of conservation laws as well as into the total variation wave equation. We prove 
existence of generalized Young measure solutions with non-negative tension after transforming the problem 
into a system of conservation laws and approximating it with a regularized system for which we obtain 
uniform estimates of the energy and the tension. We also discuss sufficient conditions for non-negativity of 
the tension for strong solutions.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

An inextensible string is defined (cf. [4]) to be the one for which the stretch is constrained 
to be equal to 1, whatever system of forces is applied to it. As in [30], some authors refer to 
it as a chain which is a long but very thin material that is inextensible but completely flexible, 
and hence mathematically described as a rectifiable curve of fixed length. Dynamics of pipes, 
flagella, chains, or ribbons of rhythmic gymnastics, mechanism of whips, and galactic motion 
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are only a few phenomena and applications that can be related to inextensible strings (see [10,
21,18] for more details).

The motion executed by a homogeneous, inextensible string with unit length and density can 
be modeled by the system

{
ηtt (t, s) = (

σ(t, s) ηs(t, s)
)
s
+ g, s ∈ [0,1],

|ηs | = 1,
(1.1)

where g ∈ R
3 is the given gravity vector, η ∈ R

3 is the unknown position vector for material 
point s at time t . The unknown scalar multiplier σ , which is called tension, satisfies the equation

σss(t, s) − |ηss(t, s)|2 σ(t, s) + |ηst (t, s)|2 = 0 (1.2)

(see Section 2.4 for the derivation of (1.2) from (1.1)). We are given the initial positions and 
velocities of the string as

η(0, s) = α(s) and ηt (0, s) = β(s). (1.3)

There are several options for boundary conditions:

a) two fixed ends:

η(t,0) = α(0) and η(t,1) = α(1) (1.4)

b) two free ends:

σ(t,0) = σ(t,1) = 0 (1.5)

c) the “ring” or periodic conditions (here it is convenient to consider s ∈ R instead of s ∈
[0, 1]):

η(t, s) = η(t, s + 1) and σ(t, s) = σ(t, s + 1) (1.6)

d) the “whip” boundary conditions when one end is free and one is fixed:

σ(t,0) = 0 and η(t,1) = 0. (1.7)

We make the convention that s = 0 corresponds to the free end while the end s = 1 is fixed at the 
origin of the space.

Even though the analysis of the dynamics of inextensible strings subject to different kinds of 
boundary conditions is a notable problem which goes back to Galileo, Leibniz and Bernoulli (cf. 
[30,4,26]), and it has been investigated by many authors in various contexts (see e.g. [10,22,21,
33,42]), there are still very few results about general well-posedness. According to [26], V. Yu-
dovich was interested in this problem (possibly because of its relation to the Euler equations, see 
our Section 2.6), and obtained some unpublished results. One of the available existence results is 
by Reeken [31,32] who proves well-posedness for an infinite string with gravity when the initial 
data is near the trivial (downwards vertical) stable stationary solution (close in H 26).
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Another one is due to Preston [26] who considers (1.1) in the absence of gravity with the 
whip boundary conditions (1.7). He obtains local existence and uniqueness in weighted Sobolev 
spaces for which the energy is bounded. He uses the method of lines, approximating with a 
discrete system of chains. In his paper, he imagines that the graph of the whip extends smoothly 
through the origin (which corresponds to the fixed end), and hence the tension extends to an 
even smooth function. This evenness leads to what he calls the compatibility boundary condition 
given by

σs(t,1) = 0.

In the presence of gravity (and still assuming the boundary condition (1.7)) this condition looks 
like

σs(t,1) = −gηs(t,1); (1.8)

it is just a consequence of our formula (2.22) and therefore is not an independent boundary 
condition. These conditions are related to the delicate issue of non-negativity of the tension. 
We study this issue in Section 2.4, allowing for all possible boundary conditions and presence 
of gravity, and find pre-conditions which a priori guarantee that the tension is non-negative for 
strong solutions. Rather surprisingly, the generalized solutions which we will construct in the 
subsequent sections of this paper will always have non-negative tension.

Dickey [18] looks into the two-dimensional case, also ignoring the gravity. He defines a new 
variable as the angle the tangent to the string makes with the positive x-axis, and obtains a 
transformed system for which he discusses two asymptotic theories, one in which the amplitude 
of the angle is small and another in which the amplitude is large.

In [27], Preston studies the space of curves parametrized by the unit speed (with one fixed 
end) as a Hilbert submanifold of the Hilbert space L2(0, 1; R3). He proves that the geodesics 
on his manifold are determined by the inextensible string system (1.1), (1.7) with g = 0. For 
technical reasons, he extends the curves through the fixed point by oddness to get curves with 
two free endpoints. He notes that if periodic boundary conditions were used, the results of his 
paper would change, for example, he would work on ordinary Sobolev spaces on the circle, rather 
than weighted Sobolev spaces on the interval.

Thess et al. [37] observed that the motion of inextensible string has deep similarities with the 
one of an ideal incompressible fluid, which is governed by the Euler equations. The two objects 
were recently put into a common geometric framework in [9]. We discuss these issues in more 
detail in Remark 2.6. Accordingly, the studies of the “toy model” (1.1) may shed more light on 
the nature of turbulence [16].

After certain transformations of (1.1) (see Section 2.2) we obtain the hyperbolic system of 
conservation laws in (2.1). This kind of systems are mentioned in the book by Dafermos [17, 
Chapter 7] as examples of balance laws in one space dimension arising in the contexts of planar 
oscillations of thermoelastic medium and oscillations of flexible, extensible elastic strings. To 
our knowledge, there is no existence result in this context for conservation laws as well as for 
the 1-Laplacian wave equation (2.10) which is derived from (1.1) by certain transformations (see 
Section 2.2). The difficulty of the problem is not surprising since the system of conservation laws 
(2.7) is not strictly hyperbolic, and its flux is discontinuous at zero.

Scalar hyperbolic conservation laws with a discontinuous flux were recently considered in 
[14]. Although the authors of that paper notice that their procedures do not work in the case of 



Y. Şengül, D. Vorotnikov / J. Differential Equations 262 (2017) 3610–3641 3613
systems, we managed to find a slightly similar approach in the case of our particular system (2.7). 
Note that a related but different class of problems concerns scalar conservation laws with a flux 
that is discontinuous in the spatial and not in the unknown variable [8,25].

In this paper we show global existence of solutions in the sense of Young measures for the 
equations of motion of the inextensible string without restrictions on the initial data. Our solu-
tions always have non-negative tension. We introduce the approximate problem which gives the 
opportunity to numerically evaluate the Young measure solutions for the inextensible string. This 
seems to be the first treatment of well-posedness both for the systems of hyperbolic conservation 
laws with discontinuous flux and for the total variation wave equation.

We work with the most complex boundary conditions, namely the “whip” conditions (1.7), 
but the results of the paper remain valid for any of (1.4), (1.5) or (1.6). In some places throughout 
the paper we emphasize the technical differences of those cases with respect to (1.7). Moreover, 
the three-dimensional space was chosen due to the physical meaning of the problem, but, math-
ematically, everything presented in the paper is true in any dimension.

The paper is organized in the following way. In Section 2.1, we introduce the basic nota-
tion. In Section 2.2, we make a series of transformations of our problem and obtain a system 
of hyperbolic conservation laws with discontinuous flux and the total variation wave equation. 
In Section 2.3, we derive an equivalent system which is more tractable due to the lack of dis-
continuity. In Section 2.4, we discuss the non-negativity of the tension which is crucial in our 
considerations. In Section 2.5, we make some preliminary observations related to the energy. 
In Section 2.6, we show how our problem can be derived from the physical principle of least 
action, and justify its relation to the motion of an ideal incompressible fluid and to the optimal 
transport. In Section 3.1, we recall the main concepts of the theory of generalized Young mea-
sures. In Section 3.2, we define the generalized solutions to our system of conservation laws with 
discontinuous flux. In Section 4.1, we introduce an approximate problem and study its global 
well-posedness. In Section 4.2, we define the energy for the approximate problem, and show dis-
sipativity of that problem. This allows us to derive, in Section 4.3, a crucial uniform L1 bound for 
the tension. In Section 5.1, we prove the main result of the paper, which is the existence of gener-
alized Young measure solutions with non-negative tension to the initial-boundary value problem 
for the equations of motion of the inextensible string, employing the equivalent continuous for-
mulation introduced in Sections 2.3 and 3.2. Then, in Section 5.2, we touch on some examples 
which illustrate our key finding that even though strong solutions with non-negative tension do 
not exist for some initial data, generalized solutions with non-negative tension do exist and can 
be interpreted from the point of view of mechanics.

2. Preliminaries

2.1. Some conventions

Throughout the paper we will denote � = (0, T ) × (0, 1). The scalar product of any two 
vectors χ, ξ in R3 is simply denoted by χξ , and |χ | is the Euclidean norm 

√
χχ . The notation 

Lip1([0, 1]; R3) stands for the set of continuous functions f : [0, 1] → R
3 satisfying

|f (s1) − f (s2)| ≤ |s1 − s2|, s1, s2 ∈ [0,1].
The symbol Sn−1 stands for the unit sphere in Rn, n ∈ N. M+(U) and M1(U) are the 
spaces of positive finite and probability measures, respectively, on a closed set U ⊂ R

n. 
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w (U1, μ; M1(U)) is the space of μ-weakly*-measurable maps (cf. [35]) from an open or 

closed set U1 ⊂R
m into M1(U) (the default measure μ on U1 is the Lebesgue measure). Generic 

positive constants are denoted by C. Finally, by regular solutions in various contexts we mean 
sufficiently smooth functions so that all derivatives involved in the associated arguments are con-
tinuous.

2.2. Changes of variables and formal transformations

1. We make an ansatz that σ ≥ 0 (cf. the discussion in Section 2.4). By putting κ := σ ηs we get 
σ = |κ| and ηs = κ

|κ| . We can then formally rewrite (1.1) as

{
ηtt = κs + g,

ηs = κ

|κ|
⇐⇒

⎧⎨
⎩

vt = κs + g,

vs =
(

κ

|κ|
)

t

(2.1)

where for the second system we use v := ηt . From (1.7) we infer that the boundary conditions 
for κ take the form

κ(t,0) = 0 and κs(t,1) = −g. (2.2)

The second condition follows from the fact that the velocity of the fixed end is zero, that is,

v(t,1) = 0, (2.3)

which is easily obtained from the second condition in (1.7) since v = ηt . Note that we can find the 
initial conditions for σ (and thus for κ) using (1.2), (1.3), (1.8) and the first condition in (1.7), 
see (2.24), but we do not need them at this stage. (In the case when the boundary conditions 
are different from the whip ones, (1.8) and (1.7) are to be replaced by suitable corresponding 
conditions.) We also observe that

κ

|κ| (0, s) = ηs(0, s) = αs(s) (2.4)

and

v(0, s) = ηt (0, s) = β(s). (2.5)

2. If α(1) = 0, then by using

η(t, s) = α(s) +
t∫

0

v(r, s) dr and σ = |κ|, (2.6)

we can come back from the “velocity v – contact force κ” formulation (2.1)–(2.5) to the original 
“position η – tension σ ” setting (1.1), (1.3), (1.7).
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3. Let ϒ = (v, κ) ∈ R
6, and define the map F : R6 × [0, T ] → R

6, (v, κ, t) �→
(

κ
|κ| , v − gt

)
. 

Then (2.1) can be rewritten in the form

ϒs = [F(ϒ, t)]t . (2.7)

This is a system of conservation laws with discontinuous flux F , where s plays the role of time 
and t plays the role of space.
4. Let us now further define

φ(t, s) :=
t∫

0

κ(z, s) dz. (2.8)

From (2.1) we get

t∫
0

vt dt =
t∫

0

κs dt +
t∫

0

g dt

which, by (2.5) and (2.8), gives

v = φs + g t + β. (2.9)

Together with (2.1) this leads to

φss(t, s) + βs =
(

φt

|φt |
)

t

=: �1φ(t, s). (2.10)

The initial/boundary conditions for φ are

φ(t,0) = 0 and φs(t,1) = −g t, (2.11a)

φ(0, s) = 0 and φt (0, s) = κ(0, s). (2.11b)

Remark 2.1. The nonlinear hyperbolic equation (2.10) can be referred to as the vectorial 
1-Laplacian wave equation because it involves the vectorial 1-Laplacian operator (cf. [36]). Here, 
once again, s plays the role of time and t plays the role of space. It can also be called the (vec-
torial) total variation wave equation because its parabolic analogue is the total variation flow [3]. 
We surmise that the total variation wave equation might be relevant in image processing, since 
its parabolic and elliptic counterparts play an important role there, we refer to [3,15] for more 
information; see also [34] and the references therein for the vectorial case (color images).

5. Since |ηs | = 1, a necessary assumption for existence of regular solutions is

|αs | = 1. (2.12)



3616 Y. Şengül, D. Vorotnikov / J. Differential Equations 262 (2017) 3610–3641
Differentiating the equation |ηs |2 = 1 with respect to time we get ηsηst = 0, yielding the second 
necessary condition

αsβs = 0. (2.13)

2.3. Removing the discontinuity

As a result of the transformation u = ηs

√
σ, v = ηt we can rewrite the second system in (2.1)

as ⎧⎨
⎩

vt = (
u |u|)

s
+ g,

vs =
(

u

|u|
)

t

.
(2.14)

Defining ξ := (v, u) ∈ R
6 we can further put this in the form

(ξ)t = �(ξ)s + (g,0) where

⎧⎨
⎩ (ξ) =

(
v,

u

|u|
)

�(ξ) = (
u |u|, v)

.

Let P : R6 → R
6 be the projection ξ �→ (0, u). Then, inspired by the implicit constitutive theory 

(cf. [14]), we formally define the map � : R6 → R
6 as

�(ξ) :=
(

v,
u

|u| + u

)

and, in order to patch the discontinuity of the function � in zero, consider its continuous inverse: 
for γ = (v, w) ∈ R

6,

�−1(γ ) = (v,M(w)) ,

where

M(w) :=
{

0 for |w| ≤ 1,

w − w
|w| for |w| ≥ 1.

Taking the derivative of (ξ) with respect to time, we find

�(ξ)t −Pξt = �(ξ)s + (g,0),

whence

�(�−1(γ ))t − [P(�−1(γ ))]t = �(�−1(γ ))s + (g,0).

We formally conclude that

γt − [P(�−1(γ ))]t = �(�−1(γ ))s + (g,0).
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Defining the operators

A(γ ) = γ −P(�−1(γ )),

B(γ ) = �(�−1(γ ))
(2.15)

we obtain

A(γ )t = B(γ )s + (g,0). (2.16)

Observation 2.2. The new equation (2.16) is equivalent to the original system (1.1) coupled with 
the additional restriction

σ ≥ 0, (2.17)

provided the solutions are regular and some natural compatibility conditions hold. Indeed, it is 
straightforward to check that for any solution (η, σ) of the system (1.1), (2.17), the corresponding 
vector function

γ = (v,w) = (ηt , ηs(1 + √
σ))

satisfies (2.16). Conversely, take any regular solution γ = (v, w) to (2.16). We now assume that

|w(0, s)| ≥ 1, w(0, s)vs(0, s) = 0 (2.18)

for all s ∈ [0, 1]. In Section 3.2 we will realize that this is a necessary and legitimate assumption. 
At the relative interior of the set {(t, s) ∈ � : |w(t, s)| ≥ 1}, letting κ = w

|w| (|w| − 1)2, we obtain

⎧⎨
⎩

vt = κs + g,

vs =
(

w

|w|
)

t

(2.19)

Since

1 =
∣∣∣∣ w

|w|
∣∣∣∣
2

,

differentiating it with respect to time gives

0 =
(

w

|w|
)

t

w

|w| = vs

w

|w| . (2.20)

Assume that there is a point (t0, s0) ∈ � such that |w(t0, s0)| < 1. Without loss of generality, it 
does not lie on the boundary of �. Let K be the connected component of the set {(t, s) ∈ � :
|w(t, s)| < 1, s = s0} containing (t0, s0), and let t1 = inf{t ≥ 0 : (t, s0) ∈ K}. If t1 = 0 then

|w(t1, s0)| ≥ 1, w(t1, s0)vs(t1, s0) = 0 (2.21)
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due to (2.18), and if t1 > 0 then (2.21) follows from (2.20) by continuity. For (t, s) = (t, s0) ∈ K

we have A(γ (t, s)) = γ (t, s), B(γ (t, s)) = (0, v(t, s)). Hence, the solution to (2.16) on K can 
be written explicitly as

v(t, s0) = (t − t1)g + v(t1, s0), w(t, s0) = (t − t1)vs(t1, s0) + w(t1, s0).

By the Pythagorean theorem,

|w(t, s0)| ≥ |w(t1, s0)| ≥ 1,

arriving at a contradiction. Consequently, |w| ≥ 1 on �, and thus (2.19) holds everywhere. By 
(2.19), there exists a vector function η such that ηs = w

|w| and ηt = v. This function η solves the 

system (1.1), (2.17) with σ = (|w| − 1)2. Note that η is determined up to a constant unless initial 
or boundary conditions are specified.

By the above analysis, we have killed the discontinuity since A and B are both continuous 
with A being sublinear and B having at most quadratic growth. We will therefore proceed in the 
same way amid the weak formulation of our problem in Section 3.2.

Remark 2.3. Observation 2.2 and considerations from Sections 2.2 and 3.2 imply that the orig-
inal (η, σ)-setting (1.1) coupled with (2.17), the (v, κ)-setting (2.1) and the γ -setting (2.16) are 
all equivalent (at least formally) provided proper compatibility assumptions on the initial and 
boundary data are met.

2.4. The equation for the tension

Differentiating the constraint |ηs |2 = 1 with respect to s shows that ηsηss = 0. Hence, multi-
plying the first equation in (1.1) by ηs we get

ηs ηtt = σs + gηs. (2.22)

Now, differentiating |ηs |2 = 1 twice with respect to time we obtain

ηs ηstt + ηst ηst = 0.

Due to (2.22),

ηss ηtt + ηs ηstt = σss + gηss .

Combining these two equations we get

σss − (ηtt − g)ηss + |ηst |2 = 0.

Expressing (ηtt − g) by (1.1), we end up with

σss − |ηss |2 σ + |ηst |2 = 0. (2.23)



Y. Şengül, D. Vorotnikov / J. Differential Equations 262 (2017) 3610–3641 3619
Proposition 2.4. Let (η, σ) be a regular solution to (1.1), (1.3) with one of the boundary condi-
tions (1.4)–(1.7). Assume that one of the following assumptions holds:

(i) the boundary condition is (1.5) or (1.6);
(ii) the boundary condition is (1.7) and g = 0;

(iii) the boundary condition is (1.4), |α(0) − α(1)| < 1 and g = 0.

Then σ ≥ 0 for all times.

Proof. Assume that, for some t , the minimum of σ(t, ·) is negative. Note that from (2.23) we 
have

σ |ηss |2 − σss ≥ 0.

By the maximum principle [28], either σ(t, ·) is a negative constant, or the minimum is achieved 
at s = 0 or 1.

The first alternative is impossible for (1.5) and (1.7), and in the remaining cases it implies 
|ηss(t, ·)| ≡ 0, so the string should be straight, and thus

|η(t,0) − η(t,1)| = 1.

This obviously contradicts (1.6), whereas (1.4) would yield |α(0) − α(1)| = 1.
The second alternative can only hold [28] provided σs(t, 0) > 0 (if the minimum is at 0) or 

σs(t, 1) < 0 (if the minimum is at 1). This immediately rules out the periodic case, so the negative 
minimum can only be achieved at fixed ends. But (2.22) implies that at such points σs = −gηs , 
and we again arrive at a contradiction. �

This proof implies that, for the “whip” boundary condition (1.7), instead of assuming that the 
gravity is zero, it suffices to know a priori that gηs(t, 1) ≤ 0, whereas, for two fixed ends (1.4), 
it suffices to know a priori that gηs(t, 0) ≥ 0 and gηs(t, 1) ≤ 0. We believe that there exist much 
weaker hypotheses which guarantee non-negativity of the tension. Our conjecture is that, for both 
(1.4) and (1.7), if σ0(s) := σ(0, s) ≥ 0 for all s ∈ [0, 1], then σ ≥ 0 on �. Remember that σ0 is 
determined by α, β and the boundary conditions. For example, in the “whip” case (1.7) it is the 
solution of the problem

(σ0)ss − |αss |2 σ0 + |βs |2 = 0, σ0(0) = 0, (σ0)s(1) = −gαs(1). (2.24)

However, for non-zero gravity, σ can be negative at the initial moment of time and even for all 
times. For instance, (1.1) has an unstable stationary solution

ηu(s) = αu(s) = (s − 1)
g

|g| , σu(s) = −|g|s, (2.25)

which satisfies both (1.4) and (1.7).
Nevertheless, our ansatz σ ≥ 0 is meaningful even for such “unstable” problems as (1.1), 

(1.3), (1.7) with the initial data

α = αu, β = 0. (2.26)
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There exist objects which can be interpreted as generalized solutions to this problem with non-
negative tension. We will get back to this example in Section 5.2.

2.5. Conservation of energy

We define the kinetic and potential energies as

K(t) = 1

2

1∫
0

|ηt |2 ds and P(t) = −
1∫

0

g η ds. (2.27)

Proposition 2.5. Let (η, σ) be a regular solution to (1.1), (1.3) with one of the boundary condi-
tions (1.4)–(1.7). Then the total energy E(t) := K(t) + P(t) is conserved.

Proof. From (1.1) we have

d

dt
(K(t) + P(t)) = 1

2

d

dt

1∫
0

|ηt |2 ds −
1∫

0

g ηt ds =

=
1∫

0

ηtt ηt ds −
1∫

0

g ηt ds =
1∫

0

(σηs)s ηt ds

= σ(t,1) ηs(t,1)ηt (t,1) − σ(t,0) ηs(t,0)ηt (t,0) −
1∫

0

σ ηsηts ds.

The third term is identically zero as observed in the end of Section 2.2. The first two terms vanish 
if 0 and 1 are either free or fixed ends. In the periodic case their difference is still zero. �

In the absence of the gravity, as also mentioned in [18], the energy of the whip is entirely 
kinetic. In this case from Proposition 2.5 we obtain that

1∫
0

|ηt (t, s)|2 ds =
1∫

0

|ηt (0, s)|2 ds = 2E(0), t > 0.

In the general case, we have

1

2

1∫
0

|ηt (t, s)|2 ds = 1

2

1∫
0

|ηt (0, s)|2 ds +
1∫

0

g(η − α)ds

= E(0) +
1∫

gη ds. (2.28)
0
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If the initial energy is finite, with the help of Grönwall’s lemma, (2.28) implies

1∫
0

|ηt (t, s)|2 ds ≤ C, t ∈ [0, T ] (2.29)

(cf. the reasoning in Section 4.2). When at least one end is fixed, the potential energy is a priori 
bounded because of |ηs | = 1, and thus C in (2.29) does not depend on T .

2.6. The least action principle

In this section we show that system (1.1) can be viewed as a manifestation of the celebrated 
physical principle of least action [6,20]. Although our reasoning here is formal and rather sloppy, 
this claim can be rigorously justified at least for g = 0 by the methods of infinite-dimensional 
Riemannian geometry (see e.g. [27]). The main objective of this section is to advocate the relation 
of the inextensible string problem to the Euler equations for ideal incompressible fluids and to 
the optimal transport, and the results of this section are never used in the rest of the paper.

Being guided by the physical principle of least action, we define the action functional for the 
inextensible string as the time integral of the difference between the kinetic and potential energies 
(cf. [20]):

S(η) =
T∫

0

K(t) − P(t) dt =
∫
�

(
1

2
|ηt |2 + gη

)
ds dt. (2.30)

Consider the set of inextensible strings with one fixed end and with fixed initial and final config-
urations:

W := {η ∈ C1(�;R3) :
|ηs(t, s)|2 = 1;η(t,1) = 0;η(0, s) = η0(s), η(T , s) = ηT (s)}, (2.31)

and let us look for minimizers of the functional S within the constraint set W . We claim that 
for each local constrained minimizer η there is a scalar function σ such that the pair (η, σ) is a 
solution to (1.1), (1.7).

Indeed, take any local constrained minimizer η. Let h be an arbitrary element of the unit 
sphere in C1(�; R3), satisfying

h(t,1) = 0, h(0, s) = 0, h(T , s) = 0, (2.32)

and let ε be a small parameter. Then

∫
�

(
1

2
|ηt + εht |2 + g(η + εh)

)
ds dt ≥

∫
�

(
1

2
|ηt |2 + gη

)
ds dt (2.33)

provided η + εh ∈ W . Dividing by ε, we can recast this in the form



3622 Y. Şengül, D. Vorotnikov / J. Differential Equations 262 (2017) 3610–3641
∫
�

(
ηtht + 1

2
ε|ht |2 + gh

)
ds dt ≥ 0 (2.34)

provided

2hsηs + ε|hs |2 = 0. (2.35)

Letting ε → 0, we deduce

∫
�

(ηtht + gh) ds dt = 0 (2.36)

provided

hsηs = 0. (2.37)

Observe that we have the equality sign in (2.36) instead of the inequality sign in (2.34) since 
we can replace h by −h in (2.36) without violating the constraints (2.32), (2.37). Integrating by 
parts in (2.36), we see that

∫
�

(ηtt − g)hds dt = 0

for all h satisfying (2.32), (2.37). Denote

Z(t, s) :=
s∫

0

(ηtt (t, ξ) − g(t, ξ)) dξ.

Then

∫
�

Zshds dt = 0,

and integration by parts gives

∫
�

Zhs ds dt = 0 (2.38)

for all h satisfying (2.32), (2.37). By a Hilbertian duality argument, it is possible to deduce from 
(2.38) that there exists a measurable scalar function σ(t, s) such that Z = σηs . Since Z(t, 0) = 0
by construction, we necessarily have σ(t, 0) = 0, whence (η, σ) solves (1.1), (1.7).



Y. Şengül, D. Vorotnikov / J. Differential Equations 262 (2017) 3610–3641 3623
Remark 2.6. In the gravity-free case g = 0, the action is purely kinetic, and the least action prin-
ciple can be recast in a geometric way: (1.1), (1.2), (1.7) are the geodesic equations for the Hilbert 
manifold of the unit speed curves equipped with the L2 Riemannian metric [27]. A similar inter-
pretation of the Euler equations of motion of an ideal incompressible fluid, both homogeneous 
and inhomogeneous, goes back to [5] (see also [7,11,38]). A common framework for the two 
models was proposed in [9]; they are examples of geodesic equations on infinite-dimensional 
manifolds of volume preserving immersions endowed with the L2 metric. The analogy between 
the two objects was also promoted in [37], where the “vorticity” for the inextensible string is in-
troduced and a blow-up simulation is provided. When the external forces are present, the geodesic 
formulation for the motion of ideal fluid is replaced by the minimization of the Lagrangian ac-
tion [11], hence the analogy with (1.1) is preserved. From the perspective of the optimal transport 
theory [38,39], the solutions of the inextensible string problem (as well as the trajectories of a 
moving ideal fluid) perform the dynamical transportation of material objects which optimizes 
some relevant cost functional. Other examples of this nature are discussed in [12]; they include 
the celebrated Monge–Kantorovich optimal transport with quadratic transportation cost, hydro-
static Boussinesq equations and the Born–Infeld electromagnetism.

3. Setting in the context of Young measures

3.1. Introduction

We will essentially follow [41] for a basic introduction to the generalized Young measures.
Let m, l, d ∈ N, p ∈ [1, +∞), � ⊂ R

m be an open set. We define Fp as the collection of 
continuous functions f : � ×R

l →R
d for which the limit

f ∞(x, z) := lim
x′→x
z′→z
s→∞

f (x′, sz′)
sp

exists for all (x, z) ∈ � × R
l and is continuous in (x, z). The function f ∞ is called the 

Lp-recession function of f . Note that it is p-homogeneous in z, i.e., f ∞(x, rz) = rpf ∞(x, z)
for all r ≥ 0.

A generalized Young measure on Rl with parameters in � is defined as a triple (ν, λ, ν∞)

such that

ν ∈ L∞
w (�;M1(Rl)),

λ ∈ M+(�),

ν∞ ∈ L∞
w (�,λ;M1(Sl−1)).

Note that ν is defined Lebesgue-a.e. on �, and ν∞ is defined λ-a.e. on �; ν is called the oscilla-
tion measure, λ is the concentration measure and ν∞ is the concentration-angle measure.

Now, we can state the fundamental theorem on generalized Young measures (see [1,19,23,
41]):
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Theorem 3.1. Let {wn} ⊂ Lp(�; Rl ) be an Lp-bounded sequence of maps. Then there exists a 
subsequence (not relabeled) and a generalized Young measure (ν, λ, ν∞) such that, for every 
f ∈ Fp ,

∫
�

f (x,wn(x))dx →
∫
�

〈νx, f (x, ξ)〉dx +
∫
�

〈ν∞
x , f ∞(x, θ)〉λ(dx),

where

〈νx, f (x, ξ)〉 =
∫
Rl

f (x, ξ)νx(dξ), 〈ν∞
x , f ∞(x, θ)〉 =

∫
Sl−1

f ∞(x, θ)ν∞(dθ).

Remark 3.2. In particular, for f (x, ξ) = |ξ |p we infer that

‖wn‖p

Lp(�)l
→

∫
�

〈νx, |ξ |p〉dx + λ(�) < +∞

in view of f ∞ ≡ 1 on Sl−1.

3.2. Weak setting of the inextensible string problem

Consider the problem of finding a velocity field v and a contact force κ , which was derived in 
Section 2.2 from the original problem (1.1), (1.3), (1.7):

vt = κs + g, (3.1a)

vs =
(

κ

|κ|
)

t

, (3.1b)

κ|s=0 = 0, (3.1c)
κ

|κ|
∣∣∣
t=0

= αs, (3.1d)

v|s=1 = 0, (3.1e)

v|t=0 = β. (3.1f)

Let us define the auxiliary function h0 : R+ →R+ as

h0(r) = 1 + √
r. (3.2)

Then we have h−1
0 (r) = (r − 1)2, r ≥ 1, and we can continue h−1

0 by zero for r ≤ 1. We also 
define H0, H ∗

0 : R3 → R
3 as

H0(χ) = χ

|χ |h
−1
0 (|χ |), H0(0) = 0,

H ∗
0 (χ) = χ

√
h−1

0 (|χ |), H ∗
0 (0) = 0.

(3.3)
|χ |
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Let

w = κ

|κ| + κ√|κ| = h0(|κ|) κ

|κ| .

Then κ = H0(w) and

κ

|κ| = κ

|κ| + κ√|κ| − w

|w|
√|κ| = w − w

|w|
√

h−1
0 (|w|) = w − H ∗

0 (w),

so we can rewrite (3.1a) and (3.1b) as

vt = (H0(w))s + g, (3.4a)

vs = (
w − H ∗

0 (w)
)
t
. (3.4b)

In Section 2.3 we showed that this system was equivalent to (1.1), (2.17). Observe that, in the 
current setting, (2.18) is a consequence of the compatibility conditions (2.12) and (2.13). Indeed,

|w(0, s)| ≥ |w(0, s) − H ∗
0 (w(0, s))| = |αs(s)| = 1,

w(0, s)vs(0, s) = |w(0, s)|αs(s)βs(s) = 0.

Define the space C̃∞(�) of test functions to be the set of pairs ϕ = (φ, ψ), φ, ψ ∈ C∞(�; R3)

such that

φ|s=1 = 0, φs |s=0 = 0, φ|t=T = 0,

ψ |s=0 = 0, ψs |s=1 = 0, ψ |t=T = 0.
(3.5)

Take any ϕ = (φ, ψ) ∈ C̃∞(�). Multiplying (3.1a) (or (3.4a)) by φ and integrating in space and 
time gives

∫
�

vφt ds dt =
∫
�

H0(w)φs ds dt −
1∫

0

βφ|t=0 ds −
∫
�

gφ ds dt. (3.6)

Doing the same with (3.1b) (or (3.4b)) and ψ gives

∫
�

[w − H ∗
0 (w)]ψt ds dt =

∫
�

vψs ds dt +
1∫

0

αψs |t=0 ds. (3.7)

Observe that we have taken into account (3.1c)–(3.1f), and the setting (3.6)–(3.7) already incor-
porates the initial and boundary conditions. We also used the assumption

α(1) = 0. (3.8)
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Denote γ = (v, w) ∈ R
6, and define functions A, B : � × R

6 → R
6 (by recalling (2.15)) as 

follows:

A(t, s, γ ) =A(t, s, v,w) = (v,w − H ∗
0 (w)), (3.9)

B(t, s, γ ) = B(t, s, v,w) = (H0(w), v). (3.10)

Since A does not depend on t, s, we will often abuse the notation and simply write A(γ ) instead 
of A(t, s, γ ), similarly with B. We also introduce the operator

�0(α,β,ϕ) = �0(α,β,φ,ψ)

= −
1∫

0

βφ|t=0 ds +
1∫

0

αψs |t=0 ds −
∫
�

gφ ds dt. (3.11)

Then (3.6) and (3.7) can be merged to get

∫
�

A(γ )ϕt ds dt =
∫
�

B(γ )ϕs ds dt + �0(α,β,ϕ). (3.12)

Observe that A and B are in the class F2 (with � = �). Moreover, since A is sublinear, A∞ ≡ 0, 
whereas it can be checked that B∞(v, w) = (w|w|, 0).

These considerations and analogy with [13,19,35,41] suggest:

Definition 3.3. A triple (ν, λ, ν∞) with

ν ∈ L∞
w (�;M1(R6)), (3.13)

λ ∈M+(�), (3.14)

ν∞ ∈ L∞
w (�,λ;M1(S5)), (3.15)

is an admissible Young measure solution to (3.1) provided the energy-tension bound

∫
�

〈νt,s , |ξ |2〉ds dt + λ(�) ≤ � (3.16)

holds, where � is a certain constant depending only on T , g, and the L2-norms of α and β , and

∫
�

〈νt,s ,A(ξ)〉ϕt (t, s) ds dt =
∫
�

〈νt,s ,B(ξ)〉ϕs(t, s) ds dt (3.17)

+
∫
�

〈ν∞
t,s ,B∞(θ)〉ϕs(t, s)λ(dt, ds) + �0(α,β,ϕ)

for every ϕ ∈ C̃∞(�).
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Remark 3.4. If an admissible Young measure solution (ν, λ, ν∞) satisfies νt,s = δγ (t,s) a.e. in �, 
where γ : � →R

6 is a measurable function and δ is the Dirac delta, and λ = 0, then γ belongs to 
L2(�; R6) and is a weak solution in the sense of (3.12). Assume now that γ is a regular function 
on � and the compatibility conditions (2.12), (2.13) and (3.8) hold. Then (3.12) yields (2.16), 
and, as in Section 2.3, the vector function γ generates a pair (η, σ) satisfying (1.1), (2.17). Since 
η is determined up to a constant, we can choose it to satisfy η(0, 1) = 0. Then, similarly to our 
previous considerations, we can check that the initial and boundary conditions (1.3), (1.7) are 
met.

Remark 3.5. The arguments in Sections 4 and 5.1 provide a rigorous expression for �.

Remark 3.6. An important open problem is the one of uniqueness of regular solutions to (1.1). 
The upward whip anomaly (see Sections 2.4 and 5.2) hints that it should be more rational to study 
the issue of uniqueness for (1.1) coupled with (2.17) (equipped with suitable initial and boundary 
conditions, either in a strong form, e.g., (1.3), (1.7), or in a weak form, e.g., (3.12)). A positive 
answer to this question is the cornerstone for such possible developments in the studies of the 
inextensible string equations as existence of dissipative solutions [24,40] and their relation with 
the Young measure ones, or discovery of additional admissibility constraints in the definition of 
Young measure solutions which would secure weak-strong uniqueness [13] for (2.16).

4. Well-posedness and uniform bounds for the approximate problem

4.1. Global regularity

Let ε ∈ (0, 1] be a constant and consider the auxiliary problem

vt = εvss + κs + g, (4.1a)

vs =
(

εκ + κ√
ε + |κ|2

)
t

− ε

(
εκ + κ√

ε + |κ|2

)
ss

, (4.1b)

κ|s=0 = 0, (4.1c)(
εκ + κ√

ε + |κ|2

)∣∣∣∣∣
t=0

= αs, (4.1d)

v|s=1 = 0, (4.1e)

v|t=0 = β, (4.1f)(
εκ + κ√

ε + |κ|2

)
s

∣∣∣∣∣
s=1

= 0, (4.1g)

vs |s=0 = 0. (4.1h)

Remark 4.1. The last two boundary conditions were added for purely technical reasons, since 
the order of the new system (4.1) is higher than that of the original system. These two restrictions 
will completely disappear after we will have passed to the limit as ε → 0.
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Denote τ = εκ + κ√
ε+|κ|2 . Then, κ = G(τ), where G is a function with positive-semidefinite 

Jacobian matrix, and G(0) = 0. Moreover, observe that the eigenvalues of ∇G−1(κ) are 
ε + ε

(ε+|κ|2)3/2 and ε + 1
(ε+|κ|2)1/2 (the latter is a double eigenvalue). Thus, the eigenvalues of 

∇G(τ) are

1

ε + ε−1/2
≤ �1(τ ) := 1

ε + (ε + |G(τ)|2)−1/2

≤ �2(τ ) := ε−1

1 + (ε + |G(τ)|2)−3/2
≤ ε−1. (4.2)

In particular, G is globally Lipschitz. Observe also that

|κ| ≥ 1 ⇒ |τ | ≥ ε + (1 + ε)−1/2 > 1,

and, consequently,

|τ | ≤ 1 ⇒ |G(τ)| < 1. (4.3)

We can rewrite the problem (4.1) as

vt = εvss + (G(τ))s + g, (4.4a)

τt = vs + ετss, (4.4b)

τ |s=0 = 0, τs |s=1 = 0, (4.4c)

v|s=1 = 0, vs |s=0 = 0, (4.4d)

τ |t=0 = αs, v|t=0 = β. (4.4e)

Theorem 4.2. Let α, β ∈ C3([0, 1]; R3), αs(0) = 0, αss(1) = 0, βs(0) = 0, β(1) = 0. Then there 
exists a unique solution (v, τ) to (4.4) in the class C∞((0, T ] × [0, 1]; R6) × C(�; R6).

Proof. (Sketch) The well-posedness of the semilinear problem (4.4) fits into the classical theory 
of Amann. Indeed, by [2, Theorem 14.6, Corollary 14.7], a smooth solution exists locally in 
time. By [2, Theorem 15.5], the solution can be continued in time as long as it remains bounded 
in L∞. But the term (G(τ))s can be rewritten as ∇G(τ)τs = G̃(t, x)τs , where G̃ is a bounded 
matrix-valued function, hence [29, Theorem 2] provides the required L∞ bound. �
4.2. Uniform energy estimates

Hereafter in Section 4 we assume that

|αs(s)| ≤ 1 for 0 ≤ s ≤ 1, (4.5)

that

α|s=1 = 0,
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and that there is a constant C∗ such that

1∫
0

|α|2(s) ds +
1∫

0

|β|2(s) ds ≤ C∗. (4.6)

Multiplying (4.4a) by v and integrating with respect to s gives

1∫
0

vtv ds = ε

1∫
0

vssv ds +
1∫

0

(G(τ))sv ds +
1∫

0

gv ds

= −ε

1∫
0

vsvs ds −
1∫

0

G(τ)vs ds +
1∫

0

gv ds

= −ε

1∫
0

vsvs ds + ε

1∫
0

G(τ)τss ds −
1∫

0

G(τ)τt ds +
1∫

0

gv ds.

Hence,

−ε

1∫
0

vsvs ds =
1∫

0

vtv ds −
1∫

0

gv ds + ε

1∫
0

∇G(τ)τsτs ds +
1∫

0

G(τ)τt ds. (4.7)

Considering the last term,

1∫
0

G(τ)τt ds =
1∫

0

κ

(
εκ + κ√

ε + |κ|2

)
t

ds

= ε

1∫
0

κκt ds +
1∫

0

κ

(
κ√

ε + |κ|2

)
t

ds

= ε

1∫
0

κκtd s +
1∫

0

κ
κt√

ε + |κ|2 ds −
1∫

0

|κ|2κ
(
√

ε + |κ|2)3
κt ds

= ε

1∫
0

κκtds + ε

1∫
0

κκt

(
√

ε + |κ|2)3
ds

= ε
d

dt

1∫ ( |κ|2
2

− 1√
ε + |κ|2

)
ds.
0
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Let

η(t, s) = α(s) +
t∫

0

v(r, s) dr (4.8)

and define the energy as

Eε(t) = 1

2

1∫
0

|v|2 ds −
1∫

0

gη ds + ε

2

1∫
0

|κ|2 ds

+ √
ε − ε

1∫
0

1√
ε + |κ|2 ds + ε

t∫
0

1∫
0

∇G(τ)τsτs ds dt.

Then (4.7) yields

(Eε)t = −ε

1∫
0

vsvs ds ≤ 0.

The initial energy

Eε(0) = 1

2

1∫
0

|β|2 ds −
1∫

0

gα ds + ε

2

1∫
0

|G(αs)|2 ds

+ √
ε − ε

1∫
0

1√
ε + |G(αs)|2

ds

is bounded due to (4.3), (4.5), (4.6). Therefore,

1

2

1∫
0

|v|2 ds + ε

2

1∫
0

|κ|2 ds + ε

t∫
0

1∫
0

∇G(τ)τsτs ds dt ≤ C +
1∫

0

gη ds ≤ C. (4.9)

Note that the second inequality follows from the first one and the Grönwall’s lemma since

d

dt

1∫
gη ds =

1∫
gv ds ≤ 1

2

1∫
|v|2 ds + 1

2

1∫
|g|2 ds ≤

1∫
gη ds + C.
0 0 0 0 0
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Finally, using (4.2) we deduce that

1

1 + ε−3/2

T∫
0

1∫
0

|τs |2 ds dt ≤ ε

T∫
0

1∫
0

�1(τ )|τs |2 ds dt

≤ ε

T∫
0

1∫
0

∇G(τ)τsτs ds dt ≤ C. (4.10)

4.3. Estimate for the tension

The estimate obtained in this section, together with the one for kinetic energy, is crucial for 
the rest of the analysis. We let

ζ(t, s) =
s∫

1

τ(t,w)dw. (4.11)

From (4.4b) we find

τ(t, s) = ηs(t, s) + ε

t∫
0

τss(r, s) dr.

Consequently,

ζ(t, s) = η(t, s) + ε

t∫
0

τs(r, s) dr. (4.12)

From (4.8) we get

(|η|2)tt = 2ηttη + 2ηtηt = 2vtη + 2|v|2, (4.13)

and from (4.4a) we obtain

1∫
0

vt ζ ds = ε

1∫
0

vssζ ds +
1∫

0

(G(τ))sζ ds +
1∫

0

gζ ds

= −ε

1∫
vsτ ds −

1∫
G(τ)τ ds +

1∫
gζ ds. (4.14)
0 0 0
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Combining (4.11)–(4.14), we infer

1∫
0

G(τ)τ ds = −ε

1∫
0

vt

⎡
⎣ t∫

0

τs(r, s) dr

⎤
⎦ ds −

1∫
0

( |η|2
2

)
t t

ds +
1∫

0

|v|2 ds

− ε

1∫
0

vsτ ds +
1∫

0

gη ds + ε

1∫
0

g

⎡
⎣ t∫

0

τs(r, s) dr

⎤
⎦ ds

=: I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t). (4.15)

The time integral of the first integral is

T∫
0

I1(t) dt = −ε

T∫
0

1∫
0

vt

⎡
⎣ t∫

0

τs(r, s) dr

⎤
⎦ ds dt

= −ε

1∫
0

v

∣∣∣
t=T

⎡
⎣ T∫

0

τs(r, s) dr

⎤
⎦ ds + ε

T∫
0

1∫
0

vτs ds dt

≤ 1

2

1∫
0

|v|2
∣∣∣
t=T

ds + ε2

2

1∫
0

⎡
⎣ T∫

0

τs(r, s) dr

⎤
⎦

2

ds

+ 1

2

T∫
0

1∫
0

|v|2 ds dt + ε2

2

T∫
0

1∫
0

|τs |2 ds dt. (4.16)

The first and third terms are bounded by the energy estimate (4.9), and the second and the fourth 
ones are bounded by Cε2(1 + ε−3/2) due to (4.10).

For the second integral in (4.15) we have

T∫
0

I2(t) dt = −
T∫

0

1∫
0

( |η|2
2

)
t t

ds dt

= −
1∫

0

( |η|2
2

)
t

∣∣∣
t=T

ds +
1∫

0

( |η|2
2

)
t

∣∣∣
t=0

ds

= −
1∫

0

ηηt

∣∣∣
t=T

ds +
1∫

0

αβ ds

≤ 1

2

1∫
|ηt |2

∣∣∣
t=T

ds + 1

2

1∫
|η|2

∣∣∣
t=T

ds +
1∫
αβ ds.
0 0 0
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Here, the first integral is bounded by (4.9); the second integral is bounded since the linear operator 
v �→ η, i.e., v(t) �→ α + ∫ t

0 v(r) dr , is bounded in the Banach space L∞(0, T ; L2(0, 1; R3)); the 
third integral is bounded due to (4.6).

Continuing from (4.15), I3 and I5 are bounded by the energy bound (4.9), and

T∫
0

I4(t) dt = ε

T∫
0

1∫
0

vτs ds dt ≤ C + Cε2(1 + ε−3/2)

as in (4.16). Finally,

T∫
0

I6(t) dt = ε

T∫
0

1∫
0

g

⎡
⎣ t∫

0

τs(r, s) dr

⎤
⎦ ds dt

= −ε

T∫
0

1∫
0

(t − T )gτs ds dt

≤ 1

2

T∫
0

1∫
0

|(t − T )g|2 ds dt + ε2

2

T∫
0

1∫
0

|τs |2 ds dt

≤ C + Cε2(1 + ε−3/2). (4.17)

Therefore, from (4.15) we conclude that

T∫
0

1∫
0

G(τ)τ ds ≤ C,

whence

T∫
0

1∫
0

κ

(
εκ + κ√

ε + |κ|2

)
ds dt ≤ C.

Thus,

∫
�

|κ(t, s)|ds dt ≤ C +
∫

�, |κ|≥1

|κ|ds dt

≤ C +
∫

�, |κ|≥1

(ε + (1 + ε)−1/2)|κ|ds dt
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≤ C +
∫

�, |κ|≥1

(
ε|κ| + |κ|√

ε + |κ|2

)
|κ|ds dt

≤ C +
∫
�

κ

(
εκ + κ√

ε + |κ|2

)
ds dt ≤ C. (4.18)

5. Existence of the Young measure solution

5.1. Main theorem

Theorem 5.1. Given a pair α ∈ Lip1([0, 1]; R3), β ∈ L2(0, 1; R3) with α(1) = 0, there exists an 
admissible Young measure solution to (3.1).

Proof. Take any sequence εn → 0. The data (α, β) can be approximated in L2(0, 1; R6) by a 
sequence of C3-functions (αn, βn) such that |(αn)s(s)| ≤ 1, (αn)s(0) = 0, (αn)ss(1) = 0, αn(1) =
0, (βn)s(0) = 0, βn(1) = 0. By Theorem 4.2 there exist smooth solutions (vn, τn) to (4.4) with 
ε = εn, α = αn, β = βn. Then (vn, κn) where κn = G(τn) is a smooth solution to (4.1) with 
ε = εn, α = αn, and β = βn. The uniform energy and tension bounds imply

‖vn‖L∞(0,T ;L2(0,1)) ≤ C, (5.1)

‖κn‖L1(�) ≤ C. (5.2)

Let

wn = κn√
εn + |κn|2

+ κn√|κn| . (5.3)

Then

‖wn‖L2(�) ≤ C. (5.4)

Consider the function hεn : R+ → R+ defined as

hεn(r) = r√
εn + r2

+ √
r,

which becomes h0 in (3.2) when ε = 0. We can easily check that this function is strictly increas-
ing. Thus, there exists the inverse function h−1

εn
: R+ → R+ which is continuous. Observe that 

h−1
εn

(0) = 0. Let us also introduce the functions Hεn, H
∗
εn

: R3 → R
3 as

Hεn(χ) = χ

|χ |h
−1
εn

(|χ |), H ∗
εn

(χ) = χ

|χ |
√

h−1
εn (|χ |), Hεn(0) = H ∗

εn
(0) = 0,

which, similarly, become (3.3) when ε = 0. Observe that these functions are continuous at zero 
(in fact everywhere). From (5.3) we find that
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κn = Hεn(wn) and
κn√

εn + |κn|2
= wn − H ∗

εn
(wn).

Now, (4.1a) and (4.1b) imply

(vn)t = εn(vn)ss + (Hεn(wn))s + g, (5.5)

and

(vn)s = (εnHεn(wn) + wn − H ∗
εn

(wn))t − εn(εnHεn(wn) + wn − H ∗
εn

(wn))ss . (5.6)

We need the following result to proceed.

Lemma 5.2. We have

Hεn(χ) → H0(χ), H ∗
εn

(χ) → H ∗
0 (χ)

uniformly on R3.

Proof. Suppose there exists sequences εnk
and χk such that

|Hεnk
(χk) − H0(χk)| ≥ δ

for some δ > 0. In the sequel we write εk instead of εnk
. Due to the above inequality, we get

|h−1
εk

(|χk|) − h−1
0 (|χk|)| ≥ δ. (5.7)

Without loss of generality, there exists χ = lim
k→∞|χk|, which can be equal to +∞. Assume 

first that χ ≤ 1. Then h−1
0 (χ) = 0, and, since h−1

0 (|χk|) is non-negative, we must have dk :=
h−1

εk
(|χk|) ≥ δ for k large enough. Therefore,

|χk| = hεk
(dk) = dk√

εk + d2
k

+ √
dk

≥ δ√
εk + δ2

+ √
δ → 1 + δ

which contradicts the assumption χ ≤ 1. Now, consider the case χ > 1. Then without loss of 
generality |χk| > 1 for all k. Denote rk = h−1

0 (|χk|). Then, there exist numbers kl for l = 1, 2, . . . , 
such that either rkl

≥ dkl
or rkl

≤ dkl
for all l. To simplify the notation, we write rk and dk instead 

of rkl
and dkl

. Due to (5.7) we either have rk ≥ dk + δ or dk ≥ rk + δ. In the first case, we have

dk√
εk + d2

k

+ √
dk = 1 + √

rk ≥ 1 + √
dk + δ

≥ dk√
εk + d2

+ √
dk + δ
k
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>
dk√

εk + d2
k

+ √
dk

which gives a contradiction. In the second case we have

1 + √
rk = dk√

εk + d2
k

+ √
dk

≥ rk + δ√
εk + (rk + δ)2

+ √
rk + δ.

However, the last inequality cannot hold for all k since by Lagrange’s mean value theorem we 
have

√
rk + δ − √

rk = 1

2
√

rk + c0
δ ≥ δ

2
√

rk + δ

for some c0 ∈ (0, δ), and

1 − rk + δ√
εk + (rk + δ)2

=
√

εk + (rk + δ)2 − √
(rk + δ)2√

εk + (rk + δ)2

=
εk

2
√

(rk+δ)2+ck√
εk + (rk + δ)2

≤ εk

2(rk + δ)2

<
δ

2
√

rk + δ

for k large enough and some ck ∈ (0, εk). Similarly, one shows that the inequality

|H ∗
εnk

(χk) − H ∗
0 (χk)| ≥ δ

cannot hold. �
We now return to the proof of the theorem and introduce the functions Aε, Bε , Dε, D : R6 →

R
6 as

Aε(γ ) =Aε(v,w) = (v,w − H ∗
ε (w)),

Bε(γ ) = (Hε(w), v),

Dε(γ ) = (0,Hε(w)),

D(γ ) = (0,H0(w)).

Note that when ε = 0 operators Aε and Bε reduce to the ones we defined earlier in (2.15). Let 
γn = (vn, wn). Then, (5.5) and (5.6) may be rewritten as
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(Aεn)t (γn) + εn(Dεn)t (γn) = (5.8)

= (Bεn)s(γn) + εn(Aεn)ss(γn) + ε2
n(Dεn)ss(γn) + (g,0).

Moreover, by (5.5) and (5.6), the initial and boundary conditions (4.1c)–(4.1h), and the restriction 
αn(1) = 0, we find that for any ϕ = (φ, ψ) ∈ C̃∞(�), which was defined by (3.5), we have

∫
�

vnφt ds dt =
∫
�

Hεn(wn)φs ds dt −
1∫

0

βnφ|t=0 ds

−
∫
�

gφ ds dt − εn

∫
�

vnφss ds dt,

∫
�

[wn − H ∗
εn

(wn) + εnHεn(wn)]ψt ds dt

=
∫
�

vnψs ds dt +
1∫

0

αnψs |t=0 ds − εn

∫
�

[wn − H ∗
εn

(wn) + εnHεn(wn)]ψss ds dt.

These can be merged to give

∫
�

Aεn(γn)ϕt ds dt + εn

∫
�

Dεn(γn)ϕt ds dt =

=
∫
�

Bεn(γn)ϕs ds dt − εn

∫
�

Aεn(γn)ϕss ds dt

− ε2
n

∫
�

Dεn(γn)ϕss ds dt + �0(αn,βn,ϕ), (5.9)

where we used the operator �0 defined in (3.11). Due to (5.1) and (5.4) we have

‖γn‖L2(�;R6) ≤ C. (5.10)

Observe that this constant merely depends on T , g, and the L2-norms of α and β .
By Lemma 5.2 we obtain

Aεn(γ ) → A(γ ), (5.11)

Bεn(γ ) → B(γ ), (5.12)

Dεn(γ ) → D(γ ), (5.13)

uniformly in γ ∈R
6. From (5.9) we infer
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∫
�

A(γn)ϕt ds dt −
∫
�

B(γn)ϕs ds dt − �0(α,β,ϕ) =

=
∫
�

[A(γn) −Aεn(γn)]ϕt ds dt +
∫
�

[Bεn(γn) −B(γn)]ϕs ds dt

− εn

∫
�

[Dεn(γn) −D(γn)]ϕt ds dt

− εn

∫
�

[Aεn(γn) −A(γn)]ϕss ds dt

− ε2
n

∫
�

[Dεn(γn) −D(γn)]ϕss ds dt

− εn

∫
�

D(γn)ϕt ds dt − εn

∫
�

A(γn)ϕss ds dt

− ε2
n

∫
�

D(γn)ϕss ds dt + �0(αn − α,βn − β,ϕ).

(5.14)

The first five terms on the right-hand side tend to zero by (5.11)–(5.13). Since A and D are 
sublinear and subquadratic, respectively, (5.10) gives

‖A(γn)‖L2(�;R6) ≤ C,

‖D(γn)‖L1(�;R6) ≤ C.

Recall that αn → α, βn → β in L2(0, 1; R3). Hence, we conclude that the remaining terms on 
the right-hand side of (5.14) go to zero. Consider the functions

Ã(t, s, ξ) =A(t, s, ξ)ϕt (t, s),

B̃(t, s, ξ) = B(t, s, ξ)ϕs(t, s).

It is easy to see that Ã and B̃ are in the class F2 (with � = �), Ã∞ ≡ 0, and B̃∞(t, s, ξ) =
B∞(ξ)ϕs(t, s). By Theorem 3.1, we can pass to the limit in (5.14) (passing to a subsequence, if 
necessary) and obtain

∫
�

〈νt,s , Ã(t, s, ξ)〉ds dt −
∫
�

〈νt,s , B̃(t, s, ξ)〉ds dt

−
∫
�

〈ν∞
t,s , B̃∞(t, s, θ)〉λ(dt, ds) − �0(α,β,ϕ) = 0, (5.15)

which yields (3.17). Remark 3.2 and (5.10) imply (3.16). �
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5.2. Examples

Let us briefly examine the implications of Theorem 5.1 for some particular cases of chain 
dynamics with the “whip” boundary conditions and non-zero gravity g. In the case of the ini-
tial data (2.26), we get existence of a generalized solution which is a priori different from the 
stationary solution (2.25) plainly because the latter one does not admit non-negative tension. 
A qualitative glimpse at the auxiliary problems (4.1) and (4.4) implies that the “approximate 
strings” start to evolve close to the upright position (2.26) but eventually with the course of time 
they approach their steady-states. As ε goes to zero, these steady-states approach the downwards 
vertical orientation with

v(s) = 0, κ(s) = −gs. (5.16)

Hence, our solution must be relevant in connection with the problem of falling of a chain which 
is initially in an upright position and then its upper end is released and the lower one remains 
fixed.

On the other hand, there are many physical and mechanical works dealing with a problem of 
falling of a chain which initially has two ends together and then one of them is released (see [42]
for a review). In this case, the initial data are

α(s) = g

(
1

2|g| −
∣∣∣∣ s

|g| − 1

2|g|
∣∣∣∣
)

, β(s) = 0. (5.17)

Although the compatibility condition (2.12) is violated for s = 1
2 , the hypothesis of Theorem 5.1

is met. Thus, the Young measure solution exists, providing a new framework for a correct de-
scription of this mechanical system.
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